Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Hum Mutat ; 38(9): 1217-1224, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600868

RESUMO

Bipolar disorder, also known as manic depression, is a brain disorder that affects the brain structure of a patient. It results in extreme mood swings, severe states of depression, and overexcitement simultaneously. It is estimated that roughly 3% of the population of the United States (about 5.3 million adults) suffers from bipolar disorder. Recent research efforts like the Twin studies have demonstrated a high heritability factor for the disorder, making genomics a viable alternative for detecting and treating bipolar disorder, in addition to the conventional lengthy and costly postsymptom clinical diagnosis. Motivated by this study, leveraging several emerging deep learning algorithms, we design an end-to-end deep learning architecture (called DeepBipolar) to predict bipolar disorder based on limited genomic data. DeepBipolar adopts the Deep Convolutional Neural Network (DCNN) architecture that automatically extracts features from genotype information to predict the bipolar phenotype. We participated in the Critical Assessment of Genome Interpretation (CAGI) bipolar disorder challenge and DeepBipolar was considered the most successful by the independent assessor. In this work, we thoroughly evaluate the performance of DeepBipolar and analyze the type of signals we believe could have affected the classifier in distinguishing the case samples from the control set.


Assuntos
Transtorno Bipolar/genética , Genômica/métodos , Mutação , Algoritmos , Transtorno Bipolar/diagnóstico , Humanos , Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único
2.
Hum Mutat ; 38(9): 1182-1192, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28634997

RESUMO

Precision medicine aims to predict a patient's disease risk and best therapeutic options by using that individual's genetic sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. For CAGI 4, three challenges involved using exome-sequencing data: Crohn's disease, bipolar disorder, and warfarin dosing. Previous CAGI challenges included prior versions of the Crohn's disease challenge. Here, we discuss the range of techniques used for phenotype prediction as well as the methods used for assessing predictive models. Additionally, we outline some of the difficulties associated with making predictions and evaluating them. The lessons learned from the exome challenges can be applied to both research and clinical efforts to improve phenotype prediction from genotype. In addition, these challenges serve as a vehicle for sharing clinical and research exome data in a secure manner with scientists who have a broad range of expertise, contributing to a collaborative effort to advance our understanding of genotype-phenotype relationships.


Assuntos
Transtorno Bipolar/genética , Doença de Crohn/genética , Sequenciamento do Exoma/métodos , Medicina de Precisão/métodos , Varfarina/uso terapêutico , Biologia Computacional/métodos , Bases de Dados Genéticas , Predisposição Genética para Doença , Humanos , Disseminação de Informação , Variantes Farmacogenômicos , Fenótipo , Varfarina/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-30272054

RESUMO

Surgery risk assessment is an effective tool for physicians to manage the treatment of patients, but most current research projects fall short in providing a comprehensive platform to evaluate the patients' surgery risk in terms of different complications. The recent evolution of big data analysis techniques makes it possible to develop a real-time platform to dynamically analyze the surgery risk from large-scale patients information. In this paper, we propose the Intelligent Perioperative System (IPS), a real-time system that assesses the risk of postoperative complications (PC) and dynamically interacts with physicians to improve the predictive results. In order to process large volume patients data in real-time, we design the system by integrating several big data computing and storage frameworks with the high through-output streaming data processing components. We also implement a system prototype along with the visualization results to show the feasibility of system design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA