Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Am Chem Soc ; 146(6): 4134-4143, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317439

RESUMO

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.

2.
Phys Rev Lett ; 132(12): 123201, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579208

RESUMO

Coulomb explosion imaging (CEI) with x-ray free electron lasers has recently been shown to be a powerful method for obtaining detailed structural information of gas-phase planar ring molecules [R. Boll et al., X-ray multiphoton-induced Coulomb explosion images complex single molecules, Nat. Phys. 18, 423 (2022).NPAHAX1745-247310.1038/s41567-022-01507-0]. In this Letter, we investigate the potential of CEI driven by a tabletop laser and extend this approach to differentiating three-dimensional structures. We study the static CEI patterns of planar and nonplanar organic molecules that resemble the structures of typical products formed in ring-opening reactions. Our results reveal that each molecule exhibits a well-localized and distinctive pattern in three-dimensional fragment-ion momentum space. We find that these patterns yield direct information about the molecular structures and can be qualitatively reproduced using a classical Coulomb explosion simulation. Our findings suggest that laser-induced CEI can serve as a robust method for differentiating molecular structures of organic ring and chain molecules. As such, it holds great promise as a method for following ultrafast structural changes, e.g., during ring-opening reactions, by tracking the motion of individual atoms in pump-probe experiments.

3.
Phys Chem Chem Phys ; 26(16): 12725-12737, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38616653

RESUMO

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.

4.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38349638

RESUMO

The absolute photoabsorption cross sections of norbornadiene (NBD) and quadricyclane (QC), two isomers with chemical formula C7H8 that are attracting much interest for solar energy storage applications, have been measured from threshold up to 10.8 eV using the Fourier transform spectrometer at the SOLEIL synchrotron radiation facility. The absorption spectrum of NBD exhibits some sharp structure associated with transitions into Rydberg states, superimposed on several broad bands attributable to valence excitations. Sharp structure, although less pronounced, also appears in the absorption spectrum of QC. Assignments have been proposed for some of the absorption bands using calculated vertical transition energies and oscillator strengths for the electronically excited states of NBD and QC. Natural transition orbitals indicate that some of the electronically excited states in NBD have a mixed Rydberg/valence character, whereas the first ten excited singlet states in QC are all predominantly Rydberg in the vertical region. In NBD, a comparison between the vibrational structure observed in the experimental 11B1-11A1 (3sa1 ← 5b1) band and that predicted by Franck-Condon and Herzberg-Teller modeling has necessitated a revision of the band origin and of the vibrational assignments proposed previously. Similar comparisons have encouraged a revision of the adiabatic first ionization energy of NBD. Simulations of the vibrational structure due to excitation from the 5b2 orbital in QC into 3p and 3d Rydberg states have allowed tentative assignments to be proposed for the complex structure observed in the absorption bands between ∼5.4 and 7.0 eV.

5.
Phys Chem Chem Phys ; 24(45): 27631-27644, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36321442

RESUMO

We investigate the two- and three-body fragmentation of tribromomethane (bromoform, CHBr3) resulting from multiple ionization by 28-femtosecond near-infrared laser pulses with a peak intensity of 6 × 1014 W cm-2. The analysis focuses on channels consisting exclusively of ionic fragments, which are measured by coincidence momentum imaging. The dominant two-body fragmentation channel is found to be Br+ + CHBr2+. Weaker HBr+ + CBr2+, CHBr+ + Br2+, CHBr2+ + Br2+, and Br+ + CHBr22+ channels, some of which require bond rearrangement prior to or during the fragmentation, are also observed. The dominant three-body fragmentation channel is found to be Br+ + Br+ + CHBr+. This channel includes both concerted and sequential fragmentation pathways, which we identify using the native frames analysis method. We compare the measured kinetic energy release and momentum correlations with the results of classical Coulomb explosion simulations and discuss the possible isomerization of CHBr3 to BrCHBr-Br (iso-CHBr3) prior to the fragmentation.

6.
Faraday Discuss ; 228(0): 39-59, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33565561

RESUMO

We investigate the fragmentation and isomerization of toluene molecules induced by strong-field ionization with a femtosecond near-infrared laser pulse. Momentum-resolved coincidence time-of-flight ion mass spectrometry is used to determine the relative yield of different ionic products and fragmentation channels as a function of laser intensity. Ultrafast electron diffraction is used to capture the structure of the ions formed on a picosecond time scale by comparing the diffraction signal with theoretical predictions. Through the combination of the two measurements and theory, we are able to determine the main fragmentation channels and to distinguish between ions with identical mass but different structures. In addition, our diffraction measurements show that the independent atom model, which is widely used to analyze electron diffraction patterns, is not a good approximation for diffraction from ions. We show that the diffraction data is in very good agreement with ab initio scattering calculations.

7.
Phys Chem Chem Phys ; 23(10): 5718-5739, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33662068

RESUMO

In this perspective, we present a comprehensive report on the spectroscopic and computational investigations of the hydrogen bonded (H-bonded) complexes of Me2O and Me2S with seven para-substituted H-bond donor phenols. The salient finding was that although the dissociation energies, D0, of the Me2O complexes were consistently higher than those of the analogous Me2S complexes, the red-shifts in phenolic O-H frequencies, Δν(O-H), showed the exactly opposite trend. This is in contravention of the general perception that the red shift in the X-H stretching frequency in the X-HY hydrogen bonded complexes is a reliable indicator of H-bond strength (D0), a concept popularly known as the Badger-Bauer rule. This is also in contrast to the trend reported for the H-bonded complexes of H2S/H2O with several para substituted phenols of different pKa values wherein the oxygen centered hydrogen bonded (OCHB) complexes consistently showed higher Δν(O-H) and D0 compared to those of the analogous sulfur centered hydrogen bonded (SCHB) complexes. Our effort was to understand these intriguing observations based on the spectroscopic investigations of 1 : 1 complexes in combination with a variety of high level quantum chemical calculations. Ab initio calculations at the MP2 level and the DFT calculations using various dispersion corrected density functionals (including DFT-D3) were performed on counterpoise corrected surfaces to compute the dissociation energy, D0, of the H-bonded complexes. The importance of anharmonic frequency computations is underscored as they were able to correctly reproduce the observed trend in the relative OH frequency shifts unlike the harmonic frequency computations. We have attempted to find a unified correlation that would globally fit the observed red shifts in the O-H frequency with the H-bonding strength for the four bases, namely, H2S, H2O, Me2O, and Me2S, in this set of H-bond donors. It was found that the proton affinity normalized Δν(O-H) values scale very well with the H-bond strength.

8.
J Phys Chem A ; 125(29): 6450-6460, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34286579

RESUMO

Photodissociation of acetaldehyde (CH3CHO) by UV excitation involves interwoven multiple reaction pathways, including nonradiative decay, isomerization, transition-state pathway, roaming, and other dissociation mechanisms. Recently, we employed picosecond time-resolved, pair-correlated product imaging in a study of acetaldehyde photodissociation at 267 nm to disentangle those competing mechanisms and to elucidate the possible roaming pathways (Yang, C. H.; Chem. Sci. 2020, 11, 6423-6430). Here, we complement the pair-correlated product speed distribution of CO(v = 0) at the high-j side of the CO rotational state distribution in the CO + CH4 channel and detail the two-dimensional data analysis of the time-resolved images. As a result, extensive comparisons with other studies can be made and the branching fractions of the previously assigned TScc(S0), non-TScc(S0), and CI(S1/S0) pathways for the CO(v = 0) + CH4 molecular channel are evaluated to be 0.74 ± 0.08, 0.15 ± 0.02, and 0.11 ± 0.02, respectively. Together with the macroscopic branching ratio between the molecular (CO + CH4) and radical (CH3 + HCO) channels at 267 nm from the literature, a global view of the microscopic pathways can then be delineated, which provides invaluable insights and should pave the way for further studies of this interesting system.

9.
J Phys Chem A ; 120(35): 6902-16, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27529293

RESUMO

Hydrogen bond can be regarded as an interaction between a base and a proton covalently bound to another base. In this context the strength of hydrogen bond scales with the proton affinity of the acceptor base and the pKa of the donor, i.e., it follows the acid-base formalism. This has been amply demonstrated in conventional hydrogen bonds. Is this also true for the unconventional hydrogen bonds involving lesser electronegative elements such as sulfur atom? In our previous work, we had established that the strength of O-H···S hydrogen bonding (HB) interaction scales with the proton affinity (PA) of the acceptor. In this work, we have investigated the other counterpart, i.e., the H-bonding interaction between the photoacids with different pKa values with a common base such as the H2O and H2S. The 1:1 complexes of five para substituted phenols p-aminophenol, p-cresol, p-fluorophenol, p-chlorophenol, and p-cyanophenol with H2O and H2S were investigated experimentally and computationally. The investigations were also extended to the excited states. The experimental observations of the spectral shifts in the O-H stretching frequency and the S1-S0 band origins were correlated with the pKa of the donors. Ab initio calculations at the MP2 and various dispersion corrected density functional levels of theory were performed to compute the dissociation energy (D0) of the complexes. The quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) method, natural bonding orbital (NBO) analysis, and natural decomposition analysis (NEDA) were carried out for further characterization of HB interaction. The O-H stretching frequency red shifts and the dissociation energies were found to be lower for the O-H···S hydrogen bonded systems compared to those for the O-H···O H-bound systems. Despite being dominated by the dispersion interaction the O-H···S interaction in the H2S complexes also conformed to the acid-base formalism, i.e., the D0 and the O-H red shift scaled with the pKa of the donor, similar to that observed in the O-H···O interaction. However, the two classes of H-bonds follow different correlations. In addition we also discuss the nuances associated with the similarity and differences in the hydrogen bonding properties of the two classes in the ground electronic state as well as in the excited state.

10.
J Phys Chem A ; 119(44): 10863-70, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26469685

RESUMO

In this work we have determined dissociation energies of O-H···S hydrogen bond in the H2S complexes of various phenol derivatives using 2-color-2-photon photofragmentation spectroscopy in combination with zero kinetic energy photoelectron (ZEKE-PE) spectroscopy. This is the first report of direct determination of dissociation energy of O-H···S hydrogen bond. The ZEKE-PE spectra of the complexes revealed a long progression in the intermolecular stretching mode with significant anharmonicity. Using the anharmonicity information and experimentally determined dissociation energy, we also validated Birge-Sponer (B-S) extrapolation method, which is an approximate method to estimate dissociation energy. Experimentally determined dissociation energies were compared with a variety of ab initio calculations. One of the important findings is that ωB97X-D functional, which is a dispersion corrected DFT functional, was able to predict the dissociation energies in both the cationic as well as the ground electronic state very well for almost every case.


Assuntos
Simulação por Computador , Complexos de Coordenação/química , Sulfeto de Hidrogênio/química , Hidrogênio/química , Enxofre/química , Termodinâmica , Ligação de Hidrogênio , Espectrometria de Massas , Fenol/química
11.
Chemphyschem ; 15(1): 109-17, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24254956

RESUMO

The C-H···Y (Y=hydrogen-bond acceptor) interactions are somewhat unconventional in the context of hydrogen-bonding interactions. Typical C-H stretching frequency shifts in the hydrogen-bond donor C-H group are not only small, that is, of the order of a few tens of cm(-1) , but also bidirectional, that is, they can be red or blue shifted depending on the hydrogen-bond acceptor. In this work we examine the C-H···N interaction in complexes of 7-azaindole with CHCl3 and CHF3 that are prepared in the gas phase through supersonic jet expansion using the fluorescence depletion by infra-red (FDIR) method. Although the hydrogen-bond acceptor, 7-azaindole, has multiple sites of interaction, it is found that the C-H···N hydrogen-bonding interaction prevails over the others. The electronic excitation spectra suggest that both complexes are more stabilized in the S1 state than in the S0 state. The C-H stretching frequency is found to be red shifted by 82 cm(-1) in the CHCl3 complex, which is the largest redshift reported so far in gas-phase investigations of 1:1 haloform complexes with various substrates. In the CHF3 complex the observed C-H frequency is blue shifted by 4 cm(-1). This is at variance with the frequency shifts that are predicted using several computational methods; these predict at best a redshift of 8.5 cm(-1). This discrepancy is analogous to that reported for the pyridine-CHF3 complex [W. A. Herrebout, S. M. Melikova, S. N. Delanoye, K. S. Rutkowski, D. N. Shchepkin, B. J. van der Veken, J. Phys. Chem. A- 2005, 109, 3038], in which the blueshift is termed a pseudo blueshift and is shown to be due to the shifting of levels caused by Fermi resonance between the overtones of the C-H bending and stretching modes. The dissociation energies, (D0), of the CHCl3 and CHF3 complexes are computed (MP2/aug-cc-pVDZ level) as 6.46 and 5.06 kcal mol(-1), respectively.


Assuntos
Hidrogênio/química , Indóis/química , Gases/química , Ligação de Hidrogênio
12.
J Phys Chem A ; 118(40): 9386-96, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25250474

RESUMO

In this work we have shown that the Birge-Sponer extrapolation method can be successfully used to determine the dissociation energies (D0) of noncovalently bound complexes. The O-H···S hydrogen-bonding interaction in the cationic state of the p-fluorophenol···H2S complex was characterized using zero kinetic energy (ZEKE) photoelectron spectroscopy. This is the first ZEKE report on the O-H···S hydrogen-bonding interaction. The adiabatic ionization energy (AIE) of the complex was determined as 65 542 cm(-1). Various intermolecular and intramolecular vibrational modes of the cation were assigned. A long progression was observed in the intermolecular stretching mode (σ) of the complex with significant anharmonicity along this mode. The anharmonicity information was used to estimate the dissociation energy (D0) in the cationic state using the Birge-Sponer extrapolation method. The D0 was estimated as 9.72 ± 1.05 kcal mol(-1). The ZEKE photoelectron spectra of analogous complex FLP···H2O was also recorded for the sake of comparison. The AIE was determined as 64 082 cm(-1). The intermolecular stretching mode in this system, however, was found to be quite harmonic, unlike that in the H2S complex. The dissociation energies of both the complexes, along with those of a few benchmark systems, such as phenol···H2O and indole···benzene complexes, were computed at various levels of theory such as MP2 at the complete basis set limit, ωB97X-D, and CCSD(T). It was found that only the ωB97X-D level values were in excellent agreement with the experimental results for the benchmark systems for the ground as well as the cationic states. The dissociation energy of the (FLP···H2S)(+) complex determined by the Birge-Sponer extrapolation was about ∼18% lower than that computed at the ωB97X-D level.

13.
Nat Chem ; 16(4): 499-505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307994

RESUMO

The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.

14.
Chemphyschem ; 14(18): 4165-76, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24203576

RESUMO

The present study combines both laser spectroscopy and ab initio calculations to investigate the intermolecular OH⋅⋅⋅O hydrogen bonding of complexes of the tyrosine side chain model chromophore compounds phenol (PH) and para-cresol (pCR) with H2 O, MeOH, PH and pCR in the ground (S0 ) state as well as in the electronic excited (S1 ) state. All the experimental and computational findings suggest that the H-bond strength increases in the S1 state and irrespective of the hydrogen bond acceptor used, the dispersion energy contribution to the total interaction energy is about 10-15 % higher in the S1 state compared to that in the S0 state. The alkyl-substituted (methyl; +I effect) H-bond acceptor forms a significantly stronger H bond both in the S0 and the S1 state compared to H2 O, whereas the aryl-substituted (phenyl; -R effect) H-bond donor shows a minute change in energy compared to H2 O. The theoretical study emphasizes the significant role of the dispersive interactions in the case of the pCR and PH dimers, in particular the CH⋅⋅⋅O and the CH⋅⋅⋅π interactions between the donor and acceptor subunits in controlling the structure and the energetics of the aromatic dimers. The aromatic dimers do not follow the acid-base formalism, which states that the stronger the base, the more red-shifted is the XH stretching frequency, and consequently the stronger is the H-bond strength. This is due to the significant contribution of the dispersion interaction to the total binding energy of these compounds.


Assuntos
Teoria Quântica , Tirosina/química , Cresóis/química , Hidrogênio/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Metanol/química , Modelos Químicos , Conformação Molecular , Oxigênio/química , Fenol/química , Espectrofotometria Infravermelho , Termodinâmica , Água/química
15.
J Phys Chem A ; 117(34): 8238-50, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23947570

RESUMO

Hydrogen bonding interaction between the ROH hydrogen bond donor and sulfur atom as an acceptor has not been as well characterized as the O-H···O interaction. The strength of O-H···O interactions for a given donor has been well documented to scale linearly with the proton affinity (PA) of the H-bond acceptor. In this regard, O-H···O interactions conform to the acid-base formalism. The importance of such correlation is to be able to estimate molecular property of the complex from the known thermodynamic data of its constituents. In this work, we investigate the properties of O-H···S interaction in the complexes of the H-bond donor and sulfur containing acceptors of varying proton affinity. The hydrogen bonded complexes of p-Fluorophenol (FP) with four different sulfur containing acceptors and their oxygen analogues, namely H2O/H2S, MeOH/MeSH, Me2O/Me2S and tetrahydrofuran (THF)/tetrahydrothiophene (THT) were characterized in regard to its S1-S0 excitation spectra and the IR spectra. Two-color resonantly enhanced multiphoton ionization (2c-R2PI), resonant ion-dip infrared (RIDIR) spectroscopy, and IR-UV hole burning spectroscopic techniques were used to probe the hydrogen bonds in the aforementioned complexes. The spectroscopic data along with the ab initio calculations were used to deduce the strength of the O-H···S hydrogen bonding interactions in these system relative to that in the O-H···O interactions. It was found that, despite being dominated by the dispersion interaction, the O-H···S interactions conform to the acid-base formalism as in the case of more conventional O-H···O interactions. The dissociation energies and the red shifts in the O-H stretching frequencies correlated very well with the proton affinity of the acceptors. However, the O-H···S interaction did not follow the same correlation as that in the O-H···O H-bond. The energy decomposition analysis showed that the dissociation energies and the red shifts in the O-H stretching frequencies follow a unified correlation if these two parameters were correlated with the sum of the charge transfer and the exchange component of the total binding energy.


Assuntos
Furanos/química , Sulfeto de Hidrogênio/química , Metanol/química , Fenóis/química , Tiofenos/química , Água/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Espectrometria de Massas por Ionização por Electrospray , Termodinâmica
16.
Sci Rep ; 13(1): 2107, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747068

RESUMO

We have studied the fragmentation of the brominated cyclic hydrocarbons bromocyclo-propane, bromocyclo-butane, and bromocyclo-pentane upon Br(3d) and C(1s) inner-shell ionization using coincidence ion momentum imaging. We observe a substantial yield of CH3+ fragments, whose formation requires intramolecular hydrogen (or proton) migration, that increases with molecular size, which contrasts with prior observations of hydrogen migration in linear hydrocarbon molecules. Furthermore, by inspecting the fragment ion momentum correlations of three-body fragmentation channels, we conclude that CHx+ fragments (with x = 0, …, 3) with an increasing number of hydrogens are more likely to be produced via sequential fragmentation pathways. Overall trends in the molecular-size-dependence of the experimentally observed kinetic energy releases and fragment kinetic energies are explained with the help of classical Coulomb explosion simulations.

17.
J Phys Chem Lett ; 14(18): 4372-4380, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37140167

RESUMO

Ultrafast H2+ and H3+ formation from ethanol is studied using pump-probe spectroscopy with an extreme ultraviolet (XUV) free-electron laser. The first pulse creates a dication, triggering H2 roaming that leads to H2+ and H3+ formation, which is disruptively probed by a second pulse. At photon energies of 28 and 32 eV, the ratio of H2+ to H3+ increases with time delay, while it is flat at a photon energy of 70 eV. The delay-dependent effect is ascribed to a competition between electron and proton transfer. High-level quantum chemistry calculations show a flat potential energy surface for H2 formation, indicating that the intermediate state may have a long lifetime. The ab initio molecular dynamics simulation confirms that, in addition to the direct emission, a small portion of H2 undergoes a roaming mechanism that leads to two competing pathways: electron transfer from H2 to C2H4O2+ and proton transfer from C2H4O2+ to H2.

18.
J Phys Chem Lett ; 13(25): 5845-5853, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35727076

RESUMO

The Coulomb explosion of tribromomethane (bromoform, CHBr3) induced by 28 fs near-infrared laser pulses is investigated by three-dimensional coincidence ion momentum imaging. We focus on the fragmentation into three, four, and five ionic fragments measured in coincidence and present different ways of visualizing the three-dimensional momentum correlations. We show that the experimentally observed momentum correlations for 4- and 5-fold coincidences are well reproduced by classical Coulomb explosion simulations and contain information about the structure of the parent molecule that could be used to differentiate structural isomers formed, for example, in a pump-probe experiment. Our results thus provide a clear path toward visualizing structural dynamics in polyatomic molecules by strong-field-induced Coulomb explosion imaging.


Assuntos
Lasers , Trialometanos , Íons
19.
J Phys Chem A ; 115(34): 9485-92, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21413767

RESUMO

The structure of the indole-benzene dimer has been investigated using experimental techniques, namely, UV spectroscopy and infrared-ultraviolet (IR/UV) double resonance spectroscopy, combined with quantum chemical calculations such as MP2 and dispersion corrected DFT methods. The red shift of the indole N-H stretch frequency in the dimer provides direct evidence that the experimentally observed indole-benzene dimer is an N-H···π bound hydrogen bonded complex. Theoretical investigations suggest that the potential energy surface (PES) of the complex is rather flat along the coordinate describing the tilt angle between the molecular planes of indole and benzene, with several minima of similar energies, namely, parallel displaced (PD), right-angle T-shaped (T), and other intermediate structures which can be categorized as tilted T-shaped (T') and tilted parallel displaced (PD') structures. Three different computational methods, namely, RI-MP2, RI-B97-D, and PBE1-DCP, are used to arrive at a new structural assignment after assessing their performance in predicting the structure of the pyrrole dimer, for which accurate experimental data are available. By comparing the computed IR spectra of PD, T, and T'/PD' structures with the experimental IR spectrum, the tilted T-shaped (T') structure was assigned to the indole-benzene dimer. The empirically dispersion-corrected functionals (RI-B97-D and PBE1-DCP) correctly reproduce the experimental IR spectrum whereas the popular post-Hartree-Fock, MP2 method gives disappointing results. These results are also in agreement with the experimental dissociation energy (D(0)) reported in the literature. The N-H stretch frequency of the indole-benzene dimer has been found to be a more pertinent parameter for the structural assignment than the dissociation energy (D(0)).


Assuntos
Benzeno/química , Físico-Química , Indóis/química , Dimerização , Elétrons , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Espectroscopia Fotoeletrônica , Teoria Quântica , Espectrofotometria Infravermelho , Termodinâmica
20.
Chem Sci ; 11(25): 6423-6430, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-34094106

RESUMO

The roaming mechanism, an unconventional reaction path, was discovered more than a decade ago in the studies of formaldehyde photodissociation, H2CO → H2 + CO. Since then, observations of roaming have been claimed in numerous photochemical processes. A closer examination of the presented data, however, revealed that evidence for roaming is not always unequivocal, and some of the conclusions could be misleading. We report here an in-depth, joint experimental and theoretical study of the title reaction. By tracking the time-evolution of the pair-correlated product state distributions, we decipher the competing, interwoven reaction pathways that lead to the radical (CH3 + HCO) and molecular (CH4 + CO) products. Possible roaming pathways are then elucidated and a more precise descriptor of the phenomenon is delineated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA