Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 632: 32-39, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36194917

RESUMO

MicroRNAs are associated with pivotal post-transcriptional gene regulation in bone formation. Human differentiated embryonic chondrocyte expressed gene 1 (Dec1) is also involved in regulating osteoblastogenesis. In the present study, we aimed to investigate the distinctive role of miR-21-5p and Dec1 in osteoblast function and to determine their biological functions. MC3T3-E1 pre-osteoblastic cells were used for in vitro analyses. miR-21-5p knockout (KO) mice, Dec1KO mice and age-matched wild-type (WT) mice were used to characterize the influence of miR-21-5p and Dec1 deficiencies on bone formation. Morphological analyses [micro-computed tomography (micro-CT)] were performed, and measurements were collected to validate miR-21-5pKO mice. Histopathological changes in mouse femur tissues were assessed by H-E staining, Azan staining, Masson's Trichrome staining, and Toluidine Blue staining. Quantitative real-time RT-PCR, western blotting and immunohistochemical staining were used to characterize the expression levels of Alkaline Phosphatase, Runx2, Osterix, Osteopontin, Dec1 and miR-21-5p. Bioinformatics analyses and dual-luciferase reporter assays were performed to confirm Dec1 as a target of miR-21-5p. Dec1 expression was gradually increased from day 7 of osteoblast induction, while miR-21-5p showed a peak at day 21. In non-induced osteoblasts, a mechanistically gain-of-function transfection study with a miR-21-5p mimic enhanced Runx2 and Osterix expression but suppressed Dec1. miR-21-5pKO mice had reduced bone growth. Dec1-deficient mice showed advanced bone formation at the age of 12 weeks compared to WT mice. The Dec1 deficiency upregulated Runx2 and Osterix expression in Dec1KO mouse femurs. Those changes, however, were reversed in miR-21-5pKO mouse femurs compared to WT mouse femurs. Dual-luciferase reporter assays showed that Dec1 is a possible downstream target of miR-21-5p. These findings showed that the reduced osteogenic potential due to a miR-21-5p deficiency is achieved by enhanced Dec1 expression and that the miR-21-5p/Dec1 axis is involved in regulating osteoblast function.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , MicroRNAs , Osteoblastos , Osteogênese , Animais , Camundongos , Fosfatase Alcalina/metabolismo , Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Osteopontina/metabolismo , Cloreto de Tolônio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microtomografia por Raio-X , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
J Periodontal Res ; 57(5): 1056-1069, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35989621

RESUMO

BACKGROUND AND OBJECTIVES: The potential role of the transcription factor Differentiated embryo-chondrocyte 2 (Dec2) in the progression of inflammatory diseases such as periodontitis has been unclear. Here, the effect of Dec2 on the expression of RANKL and on osteoclastogenesis was determined. MATERIAL AND METHODS: Wild-type (WT) and Dec2 knockout (KO) mice as a model for periodontitis were used to assess alveolar bone resorption by microcomputed tomography (CT). Western blot, flow cytometry, quantitative real-time PCR, and immunohistochemical analyses were utilized to detect inflammation and osteoclasts. Luciferase reporter and Chromatin immunoprecipitation (ChIP) assays examined the interaction between Dec2 and RANKL. RESULTS: Micro-CT showed that the alveolar bone resorption of Dec2KO mice was more severe than WT mice after treatment with P. gingivalis. Immunohistochemistry and Tartrate-resistant acid phosphatase staining showed active osteoclast differentiation in Dec2KO mice. There was an increase in CD11b+ F4/80+ and CD4+ RANKL+ T cells in Dec2KO mice treated with P. gingivalis. Moreover, inflammatory and immune markers were expressed at significantly higher levels in gingival mononuclear cells in Dec2KO mice. Furthermore, luciferase reporter and ChIP assays confirmed the direct binding of Dec2 protein to the RANKL gene. CONCLUSION: Dec2 has an immune regulation ability that modulates P. gingivalis-induced periodontitis via RANKL.


Assuntos
Perda do Osso Alveolar , Reabsorção Óssea , Periodontite , Fatores de Transcrição/metabolismo , Perda do Osso Alveolar/diagnóstico por imagem , Animais , Camundongos , Camundongos Knockout , Osteoclastos , Periodontite/diagnóstico por imagem , Periodontite/metabolismo , Ligante RANK/metabolismo , Microtomografia por Raio-X
3.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614058

RESUMO

This study characterized the effects of a deficiency of the hypoxia-responsive gene, differentiated embryonic chondrocyte gene 1 (Dec1), in attenuating the biological function of orthodontic tooth movement (OTM) and examined the roles of ribosomal proteins in the hypoxic environment during OTM. HIF-1α transgenic mice and control mice were used for hypoxic regulation of periodontal ligament (PDL) fibroblasts. Dec1 knockout (Dec1KO) and wild-type (WT) littermate C57BL/6 mice were used as in vivo models of OTM. The unstimulated contralateral side served as a control. In vitro, human PDL fibroblasts were exposed to compression forces for 2, 4, 6, 24, and 48 h. HIF-1α transgenic mice had high expression levels of Dec1, HSP105, and ribosomal proteins compared to control mice. The WT OTM mice displayed increased Dec1 expression in the PDL fibroblasts. Micro-CT analysis showed slower OTM in Dec1KO mice compared to WT mice. Increased immunostaining of ribosomal proteins was observed in WT OTM mice compared to Dec1KO OTM mice. Under hypoxia, Dec1 knockdown caused a significant suppression of ribosomal protein expression in PDL fibroblasts. These results reveal that the hypoxic environment in OTM could have implications for the functions of Dec1 and ribosomal proteins to rejuvenate periodontal tissue homeostasis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Homeodomínio , Hipóxia , Técnicas de Movimentação Dentária , Animais , Humanos , Camundongos , Hipóxia/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligamento Periodontal , Proteínas Ribossômicas , Técnicas de Movimentação Dentária/métodos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/genética
4.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055148

RESUMO

Sodium fluoride (NaF) is widely used in clinical dentistry. However, the administration of high or low concentrations of NaF has various functions in different tissues. Understanding the mechanisms of the different effects of NaF will help to optimize its use in clinical applications. Studies of NaF and epithelial cells, osteoblasts, osteoclasts, and periodontal cells have suggested the significant roles of fluoride treatment. In this review, we summarize recent studies on the biphasic functions of NaF that are related to both soft and hard periodontal tissues, multiple diseases, and clinical dentistry.


Assuntos
Inserção Epitelial/citologia , Osteoblastos/citologia , Osteoclastos/citologia , Fluoreto de Sódio/administração & dosagem , Odontologia , Relação Dose-Resposta a Droga , Inserção Epitelial/efeitos dos fármacos , Inserção Epitelial/metabolismo , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fluoreto de Sódio/farmacologia
5.
Biotechnol Bioeng ; 118(7): 2585-2596, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33818762

RESUMO

Silk fibroin (SF) from Bombyx mori has superior properties as both a textile and a biomaterial, and has been used to functionalize the surfaces of various medical inorganic materials including titanium (Ti). In this study, we endowed SF with reversible binding ability to Ti by embedding a titanium binding motif (minTBP-1 and RKLPDA). Artificial SF proteins were first created by conjugating gene cassettes for SF motif (AGSGAG) and minTBP-1 motif with different ratios, which have been shown to bind reversibly to Ti surfaces in quartz crystal microbalance analyses. Based on these results, the functionalized SF (TiBP-SF) containing the designed peptide [TS[(AGSGAG)3 AS]2 RKLPDAS]8 was prepared from the cocoon of transgenic B. mori, which accelerates the ossific differentiation of MC3T3-E1 cells when coated on titanium substrates. Thus, TiBP-SF presents an alternative for endowing the surfaces of titanium materials with osseointegration functionality, which would allow the exploration of potential applications in the medical field.


Assuntos
Diferenciação Celular , Materiais Revestidos Biocompatíveis/química , Fibroínas/química , Osteogênese , Titânio/química , Motivos de Aminoácidos , Animais , Bombyx , Linhagem Celular , Fibroínas/genética , Camundongos
6.
J Periodontal Res ; 56(3): 492-500, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33641180

RESUMO

BACKGROUND AND OBJECTIVES: Periodontal pathogens initiate various diseases and induce inflammatory host responses. The activation of inflammasomes triggers caspase-1 and interleukin (IL)-1ß-mediated pyroptosis via gasdermin D (GSDMD). Differentiated embryo chondrocyte 2 (Dec2) is a transcription repressor that controls the expression of genes involved in innate immune and inflammatory responses. However, the effects of Dec2 on inflammasome-induced pyroptosis in periodontal tissues remain elusive. This study aimed to characterize the activation of Dec2 inflammasomes that contribute to P. gingivalis lipopolysaccharide (LPS)-induced pyroptosis and its functional and regulatory importance in periodontal inflammation. MATERIALS AND METHODS: Human gingival fibroblasts (HGFs) and human periodontal ligament fibroblasts (HPDLFs) were stimulated with P. gingivalis LPS in vitro. An experimental periodontitis mouse model (wild-type (WT) and Dec2KO) was established to profile periodontal pyroptosis. RESULTS: The results demonstrate that P. gingivalis LPS activates caspase-1, caspase-11, and NF-κB in HGFs and in HPDLFs. siRNA knockdown of Dec2 stimulated the induction and further upregulated LPS-induced pyroptosis in HGFs and HPDLFs, resulting in the release of IL-1ß. Further, a deficiency of Dec2 alleviated periodontal pyroptosis via the transcriptional induction of GSDMD. In addition, P. gingivalis-induced IL-1ß expression and Dec2-deficient mice subsequently increased the inflammatory effect of P. gingivalis in HGFs and in HPDLFs, confirming the importance of Dec2 in the activation of inflammasomes and the regulation of pyroptosis. CONCLUSION: Our results demonstrate that Dec2 alleviates periodontal pyroptosis by regulating the expression of NF-κB, caspase-1 and GSDMD, suggesting that Dec2 is a crucial component of inflammasome activation and subsequent pyroptosis.


Assuntos
Inflamassomos , Piroptose , Animais , Caspase 1 , Células Cultivadas , Inflamação , Interleucina-1beta , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas de Ligação a Fosfato
7.
Mol Biol Rep ; 48(2): 1423-1431, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33507476

RESUMO

Periodontal ligament fibroblasts (PDLFs) are integral to the homeostasis of periodontal tissue. The transcription factor Dec1 functions to modulate Porphyromonas gingivalis-induced periodontal inflammation. Here, we aimed to characterize the Dec1-mediated autophagy in PDLFs under inflammatory conditions. Human PDLFs were subjected to an inflammatory environment using P. gingivalis Lipopolysaccaride (LPS) along with Dec1 siRNA in vitro. Quantitative real-time polymerase chain reaction and Western blot analyses were used to evaluate the expression levels of autophagy-related genes and their upstream AKT/mTOR signaling pathways. An experimental P. gingivalis-treated Dec1 knockout (Dec1KO) mouse model was used to confirm the expression of autophagy in PDLFs in vivo. Treatment with P. gingivalis LPS induced the expression of ATG5, Beclin1 and microtubule-associated protein 1 light chain 3 (LC3) and elevated the expression of pro-inflammatory cytokine IL-1ß and Dec1 in human PDLFs. Knockdown of Dec1 partly reversed the detrimental influences of LPS on these autophagy markers in human PDLFs. The inhibition of autophagy with Dec1 siRNA suppressed the inflammatory effect of AKT/mTOR signaling pathways following treatment with P. gingivalis LPS. P. gingivalis-treated Dec1KO mice partly reduced autophagy expression. These findings suggest that a Dec1 deficiency can modulate the interaction between autophagy and inflammation in PDLFs.


Assuntos
Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/genética , Inflamação/genética , Ligamento Periodontal/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Proteína 5 Relacionada à Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Proteína Beclina-1/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/antagonistas & inibidores , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Ligamento Periodontal/microbiologia , Ligamento Periodontal/patologia , Porphyromonas gingivalis/patogenicidade , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
8.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638690

RESUMO

Periodontal inflammation is a common inflammatory disease associated with chronic inflammation that can ultimately lead to alveolar attachment loss and bone destruction. Understanding autophagy and pyroptosis has suggested their significant roles in inflammation. In recent years, studies of differentiated embryo-chondrocyte expressed genes 1 and 2 (Dec1 and Dec2) have shown that they play important functions in autophagy and in pyroptosis, which contribute to the onset of periodontal inflammation. In this review, we summarize recent studies on the roles of clock genes, including Dec1 and Dec2, that are related to periodontal inflammation and other diseases.


Assuntos
Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Periodontite/metabolismo , Piroptose , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Periodontite/patologia
9.
Biochem Biophys Res Commun ; 532(4): 513-519, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32896382

RESUMO

Cardiac inflammation and fibrosis triggered by left ventricular pressure overload are the major causes of heart dysfunction. Differentiated embryonic chondrocyte gene 1 (Dec1) is a basic helix-loop-helix transcription factor that is comprehensively involved in inflammation and tissue fibrosis, but its role in cardiac hypertrophy remains unclear. This study explored the effects of Dec1 on cardiac fibrosis, inflammation, and apoptosis in hypertrophic conditions. Transverse aortic constriction (TAC) was performed to induce cardiac hypertrophy in wild-type (WT) mice and in Dec1 knock out (KO) mice for 4 weeks. Using the TAC mouse model, prominent differences in cardiac hypertrophy at the morphological, functional, and molecular levels were delineated by Masson's Trichrome and TUNEL staining, immunohistochemistry, RT-PCR and Western Blot. DNA microarray and microRNA (miRNA) array analyses were carried out to identify gene and miRNA expression patterns. Dec1KO mice exhibited a more severe hypertrophic heart, whereas WT mice showed a more pronounced perivascular fibrosis after TAC at 4 weeks. The Dec1 deficiency promoted M2 phenotype macrophages. Dec1KO TAC mice showed fewer apoptotic cells than WT TAC mice. APEX1, WNT16, FGF10 and MMP-10 were differentially expressed according to DNA microarray analysis and expression levels of those genes and the corresponding miRNAs (miR-295, miR-200 b, miR-130a, miR-92a) showed the same trends. Furthermore, luciferase reporter assay confirmed that FGF10 is the direct target gene of miR-130. In conclusion, a Dec1 deficiency protects the heart from perivascular fibrosis, regulates M1/M2 macrophage polarization and reduces cell apoptosis, which may provide a novel insight for the treatment of cardiac hypertrophy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Cardiomegalia/genética , Proteínas de Homeodomínio/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Expressão Gênica , Proteínas de Homeodomínio/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Miocardite/genética , Miocárdio/citologia , Miocárdio/patologia
10.
Am J Pathol ; 189(4): 773-783, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664860

RESUMO

Smad3 has circadian expression; however, whether Smad3 affects the expression of clock genes is poorly understood. Here, we investigated the regulatory mechanisms between Smad3 and the clock genes Dec1, Dec2, and Per1. In Smad3 knockout mice, the amplitude of locomotor activity was decreased, and Dec1 expression was decreased in the suprachiasmatic nucleus, liver, kidney, and tongue compared with control mice. Conversely, Dec2 and Per1 expression was increased compared with that of control mice. In Smad3 knockout mice, immunohistochemical staining revealed that Dec1 expression decreased, whereas Dec2 and Per1 expression increased in the endothelial cells of the kidney and liver. In NIH3T3 cells, Smad3 overexpression increased Dec1 expression, but decreased Dec2 and Per1 expression. In a wound-healing experiment that used Smad3 knockout mice, Dec1 expression decreased in the basal cells of squamous epithelium, promoting wound healing of the mucosa. Finally, the migration and proliferation of Smad3 knockdown squamous carcinoma cells was suppressed by Dec1 overexpression but was promoted by Dec2 overexpression. Dec1 overexpression decreased E-cadherin and proliferating cell nuclear antigen expression, whereas these expression levels were increased by Dec2 overexpression. These results suggest Smad3 is relevant to circadian rhythm and regulates cell migration and proliferation through Dec1, Dec2, and Per1 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular , Proliferação de Células , Células Epiteliais/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas Circadianas Period/metabolismo , Proteína Smad3/fisiologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Ritmo Circadiano , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Proteínas Circadianas Period/genética , Fatores de Transcrição/genética
11.
Dent Traumatol ; 36(3): 278-284, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31797525

RESUMO

BACKGROUND/AIMS: Lacerations of the oral mucosa and fractures of alveolar processes commonly occur in traumatic dental injuries (TDIs). Impaired wound healing and tissue regeneration have severe consequences on the quality of life. Bone marrow mesenchymal stem cells (BMMSCs) possess the ability of self-renewal and multipotential differentiation. Treatment with low-level sodium fluoride (NaF) has emerged as a promising approach to enhance wound repair. The aim of this study was to assess the effects of low-level NaF on soft tissue healing and on the proliferation, migration and extracellular matrix synthesis of BMMSCs. MATERIAL AND METHODS: BMMSCs derived from mice were treated with 50 µM, 500 µM, or 5 mM NaF for 12, 24, and 48 hours, and cell proliferation was assessed by the MTS assay. Cell motility was detected at 12 and 24 hours by a wound healing assay, and osteoblastic differentiation for 21 days by 1% Alizarin Red S staining in 50 µM NaF-treated BMMSCs. Gene expression of Runx2 and Osteocalcin was evaluated by quantitative real-time PCR. An experimental rat skin wound model was employed, and levels of c-Myc, Ki67, fibronectin, and vimentin were assessed by immunohistochemistry. RESULTS: There was a significant induction in the proliferation and migration of BMMSCs treated with 50 µM NaF. The expression of Ki67 and c-Myc protein was increased in tissues treated with 50 µM NaF, and the expression of fibronectin and vimentin in the 50 µM NaF-treated tissues was stimulated. Alizarin Red staining revealed enhanced mineralization in 50 µM NaF-treated BMMSCs with increased expression of Runx2 and Osteocalcin, indicating their upregulated osteogenic differentiation. CONCLUSION: Low-level NaF could promote soft tissue healing and hard tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Camundongos , Qualidade de Vida , Ratos , Fluoreto de Sódio/farmacologia , Cicatrização
12.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597354

RESUMO

Cardiac fibrosis is a major cause of cardiac dysfunction in hypertrophic hearts. Differentiated embryonic chondrocyte gene 1 (Dec1), a basic helix-loop-helix transcription factor, has circadian expression in the heart; however, its role in cardiac diseases remains unknown. Therefore, using Dec1 knock-out (Dec1KO) and wild-type (WT) mice, we evaluated cardiac function and morphology at one and four weeks after transverse aortic constriction (TAC) or sham surgery. We found that Dec1KO mice retained cardiac function until four weeks after TAC. Dec1KO mice also revealed more severely hypertrophic hearts than WT mice at four weeks after TAC, whereas no significant change was observed at one week. An increase in Dec1 expression was found in myocardial and stromal cells of TAC-treated WT mice. In addition, Dec1 circadian expression was disrupted in the heart of TAC-treated WT mice. Cardiac perivascular fibrosis was suppressed in TAC-treated Dec1KO mice, with positive immunostaining of S100 calcium binding protein A4 (S100A4), alpha smooth muscle actin (αSMA), transforming growth factor beta 1 (TGFß1), phosphorylation of Smad family member 3 (pSmad3), tumor necrosis factor alpha (TNFα), and cyclin-interacting protein 1 (p21). Furthermore, Dec1 expression was increased in myocardial hypertrophy and myocardial infarction of autopsy cases. Taken together, our results indicate that Dec1 deficiency suppresses cardiac fibrosis, preserving cardiac function in hypertrophic hearts. We suggest that Dec1 could be a new therapeutic target in cardiac fibrosis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Obstrução do Fluxo Ventricular Externo/complicações , Animais , Biomarcadores , Cardiomegalia/diagnóstico , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomiopatias/diagnóstico , Modelos Animais de Doenças , Ecocardiografia , Fibrose , Expressão Gênica , Testes de Função Cardíaca , Proteínas de Homeodomínio , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Obstrução do Fluxo Ventricular Externo/diagnóstico , Remodelação Ventricular
13.
Int J Mol Sci ; 19(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29518061

RESUMO

The daily rhythm of mammalian energy metabolism is subject to the circadian clock system, which is made up of the molecular clock machinery residing in nearly all cells throughout the body. The clock genes have been revealed not only to form the molecular clock but also to function as a mediator that regulates both circadian and metabolic functions. While the circadian signals generated by clock genes produce metabolic rhythms, clock gene function is tightly coupled to fundamental metabolic processes such as glucose and lipid metabolism. Therefore, defects in the clock genes not only result in the dysregulation of physiological rhythms but also induce metabolic disorders including diabetes and obesity. Among the clock genes, Dec1 (Bhlhe40/Stra13/Sharp2), Dec2 (Bhlhe41/Sharp1), and Bmal1 (Mop3/Arntl) have been shown to be particularly relevant to the regulation of energy metabolism at the cellular, tissue, and organismal levels. This paper reviews our current knowledge of the roles of Dec1, Dec2, and Bmal1 in coordinating the circadian and metabolic pathways.


Assuntos
Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Relógios Circadianos , Metabolismo Energético , Fatores de Transcrição ARNTL/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos
14.
Biochem Biophys Res Commun ; 469(3): 477-82, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26697751

RESUMO

Human differentiated embryo chondrocyte expressed gene 1 (DEC1) is frequently used as a marker of senescence in vivo. Fibroblast growth factor 21 (FGF21), a novel endocrine-like member of the FGF superfamily, is highly expressed in the liver, and FGF21-transgenic mice have extended lifespans. Thus, we hypothesized that FGF21 may play a role in the DEC1-mediated aging process. In this study, DEC1 knockout (KO) mice were used to characterize the mechanism by which FGF21 protects mice from aging. Aging is strongly diminished in DEC1 KO mice, which is reflected by decreased lipid levels and oxidative stress, leading to an amelioration of liver function and structure. The expression of FGF21 decreased with aging in wild-type (WT) mice, whereas ATF4, Phospho-ERK and Phospho-p38 expression was maintained and was accompanied by a compensatory rise of FGF21 mRNA and protein expression in DEC1 KO mice. Over-expression of DEC1 markedly abolished the hepatic expression of FGF21, and siRNA-mediated inhibition of endogenous DEC1 increased the expression of FGF21. DEC1 further diminished the expression of ATF4 in HepG2 cells over-expressing DEC1. The induction of FGF21 and ATF4 at the mRNA and protein levels during the course of aging supports the view that DEC1 KO mice are able to restore the age-related imbalance of metabolism. Collectively, the data obtained in this study suggest that DEC1 is a novel negative regulator of hepatic FGF21 expression.


Assuntos
Envelhecimento/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hepatócitos/metabolismo , Proteínas de Homeodomínio/metabolismo , Fígado/metabolismo , Animais , Linhagem Celular , Hepatócitos/citologia , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Biochem Biophys Res Commun ; 455(3-4): 390-5, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25446074

RESUMO

Differentiated embryo chondrocyte 2 (DEC2/Sharp-1/Bhlhe41), a basic helix-loop-helix (bHLH) transcription factor, has been shown to regulate the transcription of target genes by binding to their E-box elements. We identified a possible DEC2-response element (consensus E-box: CACGTG) in the promoter region of Twist1. Forced expression of DEC2 significantly repressed Twist1 promoter activity under normoxia and under hypoxia as assessed by a luciferase reporter assay. In addition, over-expression of DEC2 repressed Twist1 mRNA expression assessed by quantitative real-time PCR. Site-directed mutagenesis studies showed that mutagenesis of the consensus E-box sequence eliminated the ability of DEC2 to reduce the Twist1 promoter activity. Chromatin immunoprecipitation (ChIP) assays confirmed that the DEC2-mediated repression is primarily achieved by binding to the E-box in the Twist1 promoter. Knockdown of DEC2 by siRNA significantly attenuated the repression of Twist1 expression. DEC2 and Twist1 exhibit inversed protein expression patterns during development of mouse tongue embryo tissue. Given the fact that DEC2 protein is emerging as an important regulator in a vast array of cellular events, including cell differentiation, maturation of lymphocytes and the molecular clock, our study elucidates an important mechanism by which DEC2 regulates cellular function by modulating the expression of Twist1.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Língua/embriologia , Fatores de Transcrição/metabolismo
16.
Pathobiology ; 81(4): 206-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25278027

RESUMO

Head and neck cancer, including oral squamous cell carcinoma (OSCC), ranks as the sixth most common malignancy worldwide. Overall 5-year survival rates of OSCC have not significantly improved during the past 3 decades and the 5-year survival rate is less than 50%. Several invasion grading systems have been employed in OSCC, however, their utility is still controversial. HuD belongs to the Hu protein family and acts as an RNA-binding protein involved in mRNA stability and translational regulation. Although HuD has a pivotal role for neuronal differentiation, the functional role of HuD in OSCCs is still unclear. In this study, we examined HuD expression in 82 OSCC cases. Expression of HuD was observed in 36.6% of OSCCs and significantly associated with histological differentiation, nodal metastasis and mode of invasion. HuD expression in high-metastatic HSC3 cells was higher than in low-metastatic HSC4 cells, and inhibition of invasion ability and activation of caspase-3 were shown by HuD siRNA-treated HSC3 cells. Furthermore, we clarified that HuD regulates expression of vascular endothelial growth factor (VEGF)-A, VEGF-D, matrix metallopeptidase (MMP)-2 and MMP-9. These results suggest that HuD is a useful diagnostic and therapeutic target in OSCCs.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proteínas ELAV/metabolismo , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/genética , Linhagem Celular , Progressão da Doença , Proteínas ELAV/genética , Proteína Semelhante a ELAV 4 , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/genética , Invasividade Neoplásica , RNA Interferente Pequeno/genética
17.
BMC Mol Cell Biol ; 25(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166556

RESUMO

Chronic alcohol exposure increases liver damage such as lipid accumulation and hepatitis, resulting in hepatic cirrhosis. Chronic alcohol intake is known to disturb circadian rhythms in humans and animals. DEC1, a basic helix-loop-helix transcription factor, plays an important role in the circadian rhythm, inflammation, immune responses, and tumor progression. We have previously shown that Dec1 deficiency inhibits stresses such as periodontal inflammation and perivascular fibrosis of the heart. However, the significance of Dec1 deficiency in chronic alcohol consumption remains unclear. In the present study, we investigated whether the biological stress caused by chronic alcohol intake is inhibited in Dec1 knockout mice. We treated control and Dec1 knockout mice for three months by providing free access to 10% alcohol. The Dec1 knockout mice consumed more alcohol than control mice, however, we observed severe hepatic lipid accumulation and circadian rhythm disturbance in control mice. In contrast, Dec1 knockout mice exhibited little effect on these outcomes. We also investigated the expression of peroxisome proliferator-activated receptors (PPARs) and AMP-activated protein kinase (AMPK), which are involved in the regulation of fatty acid metabolism. Immunohistochemical analysis revealed increases of phosphorylation AMPK and PPARa but decreases PPARg in Dec1 knockout mice compared to that in control mice. This indicates a molecular basis for the inhibition of hepatic lipid accumulation in alcohol-treated Dec1 knockout mice. These results suggest a novel function of Dec1 in alcohol-induced hepatic lipid accumulation and circadian rhythm disorders.


Assuntos
Transtornos Cronobiológicos , Proteínas de Homeodomínio , Humanos , Camundongos , Animais , Proteínas de Homeodomínio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/metabolismo , Etanol/metabolismo , Camundongos Knockout , Inflamação/metabolismo , Transtornos Cronobiológicos/metabolismo , Lipídeos
18.
Histol Histopathol ; 38(2): 165-170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35876434

RESUMO

Becker muscular dystrophy (BMD) is a hereditary disease characterized by dystrophin deletion that consequently induces muscle weakness, cardiac hypertrophy and cardiac failure; These conditions are similar to those in Duchenne muscular dystrophy. The circadian rhythm is a physiological phenomenon that is predominantly regulated by the transcription and translation of clock genes. Bmal1 (Brain and muscle Arnt-like protein 1) is one of the core clock genes, and its deficiency disturbs the circadian rhythm, results in cardiac hypertrophy and cardiac failure. Dystrophin expression under diurnal conditions and in Bmal1 deficiency is yet to be elucidated. In this study, we analyzed the heart and lungs sampled during a BMD autopsy. Macroscopical examination revealed a large heart and dilated cardiomyopathy. Microscopical examination revealed an undulated structure, as well as the degeneration, and necrosis of myocardial cells. We also analyzed dystrophin expression in tissues obtained from human autopsies and mice. In human autopsy cases, dystrophin expression was lower in the heart with BMD compared that in the heart with non-BMD hypertrophy. In the heart and muscle of control mice, dystrophin expression was higher at ZT0 than at ZT12. The dystrophin expression was found to be lower in heart-specific Bmal1 knockout mice compared to that in the control mice. Hence, our study indicated that BMD was closely associated with cardiac hypertrophy and cardiac failure, while dystrophin had a diurnal expression pattern in control mice that was regulated by Bmal1.


Assuntos
Cardiomiopatia Dilatada , Distrofina , Insuficiência Cardíaca , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Distrofina/genética , Distrofia Muscular de Duchenne/patologia , Miócitos Cardíacos/metabolismo , Camundongos Knockout
19.
Compr Physiol ; 14(1): 5291-5323, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158368

RESUMO

Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation. Multiple preclinical studies have shown that EE benefits functional recovery, including improved motor and cognitive function and psychological benefits mediated by complex protective signaling pathways. This article provides an overview of the enriched environment protocols used in animal models of ischemic stroke, ICH, and TBI, as well as relevant clinical studies, with a particular focus on ischemic stroke. Additionally, we explored studies of animals with stroke and TBI exposed to EE alone or in combination with multiple drugs and other rehabilitation modalities. Finally, we discuss the potential clinical applications of EE in future brain rehabilitation therapy and the molecular and cellular changes caused by EE in rodents with stroke or TBI. This article aims to advance preclinical and clinical research on EE rehabilitation therapy for acquired brain injury. © 2024 American Physiological Society. Compr Physiol 14:5291-5323, 2024.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Ratos Sprague-Dawley , Meio Ambiente , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas/complicações , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/complicações , AVC Isquêmico/complicações , Modelos Animais de Doenças
20.
J Cell Biochem ; 113(10): 3246-53, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22644784

RESUMO

Growing evidence indicates that inflammation is a contributing factor leading to cancer development. However, pathways involved in this progression are not well understood. The involvement of DEC1 in cancer prompted us to examine whether pro-inflammatory cytokine interleukin-1ß (IL-1ß) induces the expression of DEC1 in oral inflammation. We found that IL-1ß up-regulated DEC1 and hypoxia-inducible factor-1α (HIF-1α) protein and elevated the HIF-1α-responsive gene vascular endothelial growth factor (VEGF) expression in human primary gingival cells. HIF-1α and DEC1 immunoreactivity were significantly higher in the cases of gingival inflammation. We demonstrate that IL-1ß up-regulates DEC1 and HIF-1α protein through a classical inflammatory signaling pathway involving Akt. Our data strongly suggest that PI-3K-Akt is an upstream participant in IL-1ß-mediated DEC1 and HIF-1α induction. This is supported by the following data: (1) IL-1ß induces 473 serine phosphorylation of Akt; (2) IL-1ß-mediated Akt activation occurs in a PI-3K-dependent manner, and specific inhibition of PI-3K prevents Akt phosphorylation; and (3) inhibition of Akt prevents IL-1ß-mediated DEC1 and HIF-1α induction. Taken together, these results suggest that DEC1 is one of the important transcription factors in inflammation.


Assuntos
Gengiva/patologia , Interleucina-1beta/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/patologia , Western Blotting , Células Cultivadas , Cromonas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gengiva/citologia , Gengiva/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Masculino , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Porphyromonas gingivalis/patogenicidade , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Serina/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA