Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Plant Microbe Interact ; 32(12): 1598-1613, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31364484

RESUMO

Alternaria blight, caused by Alternaria brassicae, causes considerable yield loss in Brassica crops. While several blight-resistant varieties have been developed using resistance sources from host germplasm, none of them are entirely successful in imparting durable resistance. This has prompted the exploration of novel gene pools of nonhost plant species. Nonhost resistance (NHR) is a durable form of resistance, comprising pre- and postinvasion layers of defense. We aimed to identify the molecular basis of NHR to A. brassicae and identify the layers of NHR operating in a nonhost, chickpea (Cicer arietinum). To elucidate the layers of NHR operating against A. brassicae, we compared the histopathology and infection patterns of A. brassicae in C. arietinum and Brassica juncea. Delayed conidial germination, impeded hyphal growth, suppressed appressorium formation, and limited hyphal penetration occurred in the nonhost plant compared with the host plant, implying the involvement of the preinvasion layer of NHR in C. arietinum. Next, we investigated the molecular basis of robust NHR, in C. arietinum challenged with A. brassicae, by microarray-based global transcriptome profiling. Genes involved in stomatal closure, cuticular wax biosynthesis, cell-wall modification, and secondary metabolite production (contributing to preinvasion NHR) as well as reactive oxygen species (ROS) and cell death (contributing to postinvasion NHR) were found to be upregulated. Consistent with transcriptomic analysis, the morpho-pathological analysis revealed stomatal closure, ROS accumulation, and localized cell death in C. arietinum as the defense strategies against A. brassicae. Thus, we identified NHR-contributing genes with potential applications in blight resistance gene transfer to B. juncea.


Assuntos
Alternaria , Cicer , Resistência à Doença , Transcriptoma , Alternaria/fisiologia , Cicer/microbiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Mostardeira/genética , Mostardeira/microbiologia
2.
Front Plant Sci ; 14: 1251349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304451

RESUMO

Alternaria blight is a devastating disease that causes significant crop losses in oilseed Brassicas every year. Adoption of conventional breeding to generate disease-resistant varieties has so far been unsuccessful due to the lack of suitable resistant source germplasms of cultivated Brassica spp. A thorough understanding of the molecular basis of resistance, as well as the identification of defense-related genes involved in resistance responses in closely related wild germplasms, would substantially aid in disease management. In the current study, a comparative transcriptome profiling was performed using Illumina based RNA-seq to detect differentially expressed genes (DEGs) specifically modulated in response to Alternaria brassicicola infection in resistant Sinapis alba, a close relative of Brassicas, and the highly susceptible Brassica rapa. The analysis revealed that, at 48 hpi (hours post inoculation), 3396 genes were upregulated and 23239 were downregulated, whereas at 72 hpi, 4023 genes were upregulated and 21116 were downregulated. Furthermore, a large number of defense response genes were detected to be specifically regulated as a result of Alternaria infection. The transcriptome data was validated using qPCR-based expression profiling for selected defense-related DEGs, that revealed significantly higher fold change in gene expression in S. alba when compared to B. rapa. Expression of most of the selected genes was elevated across all the time points under study with significantly higher expression towards the later time point of 72 hpi in the resistant germplasm. S. alba activates a stronger defense response reaction against the disease by deploying an array of genes and transcription factors involved in a wide range of biological processes such as pathogen recognition, signal transduction, cell wall modification, antioxidation, transcription regulation, etc. Overall, the study provides new insights on resistance of S. alba against A. brassicicola, which will aid in devising strategies for breeding resistant varieties of oilseed Brassica.

3.
Plant Mol Biol ; 78(6): 577-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328090

RESUMO

Darjeeling teas are the highest grown teas in the world and preferred for its flavour, aroma and quality. Apart from the genetic makeup of the plant, earlier reports suggest that insect infestation, particularly jassids and thrips triggers the aroma and flavour formation in Darjeeling tea. The present work encompasses the identification of the genes/transcriptomes responsible for the typical flavour of Darjeeling tea, besides understanding the role of jassids and thrips in particular, in producing the best cup character and quality. The quantitative real time PCR analysis was based on a suppression subtractive hybridisation forward library of B157 (tea clone infested with thrips), providing us transcripts related to aroma and flavour formation. We observed the expression of genes like leucine zipper, ntd, nced, geraniol synthase, raffinose synthase, trehalose synthase, amylase, farnesyl transferase, catalase, methyl transferase, linalool synthase, peroxidases, elicitor responsive proteins, linamarase, nerolidol linalool synthase 2, 12-oxophytodienoate reductase, glucosidase, MYB transcription factor, and alcohol dehydrogenase, highly regulated due to insect infestation, manufacturing stresses and mechanical injury. The first report on gene expression dynamics in thrips infested Darjeeling tea leaves can be extrapolated with increase in volatiles which is responsible for enhancing the quality of Darjeeling tea, specially the flavour and aroma of the infusion. We hope to model these responses in order to understand the molecular changes that occur during Darjeeling tea flavour formation.


Assuntos
Camellia sinensis/química , Chá/química , Animais , Camellia sinensis/genética , Camellia sinensis/parasitologia , Aromatizantes/química , Genes de Plantas , Insetos/patogenicidade , Tisanópteros/patogenicidade , Transcriptoma , Compostos Orgânicos Voláteis/química
4.
Funct Integr Genomics ; 12(3): 543-63, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22562548

RESUMO

Understanding the genes that govern tea plant (Camellia sinensis) architecture and response to drought stress is urgently needed to enhance breeding in tea with improved water use efficiency. Field drought is a slow mechanism and the plants go through an adaptive process in contrast to the drastic changes of rapid dehydration in case of controlled experiments. We identified a set of drought responsive genes under controlled condition using SSH, and validated the identified genes and their pattern of expression under field drought condition. The study was at three stages of water deficit stress viz., before wilting, wilting and recovery, which revealed a set of genes with higher expression at before wilting stage including dehydrin, abscissic acid ripening protein, glutathione peroxidase, cinnamoyl CoA reductase, calmodulin binding protein. The higher expression of these genes was related with increase tolerance character of DT/TS-463 before wilting, these five tolerant progenies could withstand drought stress and thus are candidates for breeding. We observed that physiological parameter like water use efficiency formed a close group with genes such as calmodulin related, DRM3, hexose transporter, hydrogen peroxide induced protein, ACC oxidase, lipase, ethylene responsive transcription factor and diaminopimelate decarboxylase, during wilting point. Our data provides valuable information for the gene components and the dynamics of gene expression in second and third leaf against drought stress in tea, which could be regarded as candidate targets potentially associated with drought tolerance. We propose that the identified five tolerant progenies on the basis of their drought tolerance can thus be utilised for future breeding programmes.


Assuntos
Adaptação Biológica , Camellia sinensis/genética , Secas , Perfilação da Expressão Gênica/métodos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Camellia sinensis/enzimologia , Camellia sinensis/fisiologia , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Lipase/genética , Lipase/metabolismo , Doenças das Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Água/metabolismo
5.
3 Biotech ; 12(8): 177, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35855477

RESUMO

Deep sequencing technologies such as RNA sequencing can help unravel mechanisms governing defense or resistance responses in plant-pathogen interactions. Several studies have been carried out to investigate the transcriptomic changes in Musa germplasm against Yellow Sigatoka disease, but the defense response of Musa paradisiaca has not been investigated so far. We carried out transcriptome sequencing of M. paradisiaca var. Kachkal infected with the pathogen Pseudocercospora musae and found that a vast set of genes were upregulated while many genes were downregulated in the resistant cultivar as a result of infection. After transcriptome assembly and differential gene expression analysis, 429 upregulated and 156 downregulated genes were filtered out (considering fold change ± 2, p < 0.01). Functional annotation of the differentially expressed genes (DEGs) enriched the upregulated genes into 49 gene ontology (GO) classes of biological processes (BP), 20 classes of molecular function (MF) and 9 classes of cellular component (CC). Similarly, the downregulated genes were classified into 35 GO classes of BP, 28 classes of MF and 6 classes of CC. The KEGG enrichment analysis revealed that the upregulated genes were most highly represented in 'metabolic' and 'biosynthesis of secondary metabolites' pathways. Additionally, 'plant hormone signal transduction', 'plant-pathogen interaction' and 'phenylpropanoid biosynthesis' pathways were also significantly enriched indicating their involvement in resistance responses against the pathogen. The RNA-seq analysis also depicts that a range of important defense-related genes are modulated as a result of infection, all of which are responsible for either mediating or activating resistance responses in the host. We studied and validated the expression profiles of ten important defense-related genes potentially involved in conferring resistance to the pathogen through qRT-PCR. Almost all the selected defense-related genes were found to be highly and significantly upregulated within 24 h post inoculation (hpi) and for some genes, the expression remained consistently high till the later time point of 72 hpi. These results, thus, indicate that the infection by P. musae leads to a rapid reprogramming of the defense transcriptome of the resistant banana cultivar. The defense-related genes identified to be modulated in response to infection are important not only for pathogen recognition and perception but also for activation and persistence of defense in the host. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03245-9.

6.
PeerJ ; 7: e7486, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579565

RESUMO

BACKGROUND: Alternaria brassicae, the causal organism of Alternaria blight, is a necrotroph infecting crops of the Brassicaceae family at all growth stages. To circumvent this problem, several disease management strategies are being used in the field, and disease-resistant varieties have also been developed. However, no strategy has proven completely successful, owing to the high variability in virulence among A. brassicae isolates, which causes a diverse spectrum of symptoms. Nonhost resistance (NHR) is a robust and broad-spectrum defense mechanism available in plants, and the exploitation of gene pools from plant species that are nonhost to A. brassicae could serve as novel sources of resistance. METHODOLOGY: We searched the literature using key words relevant to this study in various search engines, such as PubMed, Web of Science, and Google Scholar, as well as certain journal websites. The literature was retrieved, sorted, and mined to extract data pertinent to the present review. RESULTS: In this review, we have comprehensively covered the recent progress made in developing Alternaria blight resistance in Brassica crops by exploiting host germplasm. We also enumerate the potential NHR sources available for A. brassicae and the NHR layers possibly operating against this pathogen. In addition, we propose different strategies for identifying NHR-related genes from nonhost plants and testing their relevance in imparting broad-spectrum resistance when transferred to host plants. CONCLUSION: This review will help broaden the current knowledge base pertaining to the resistance sources available in host germplasm, the exploitation of NHR mechanisms, and their applications in protecting Brassica crops from Alternaria blight. The insights might also be applicable to a wider repertoire of plant pathogens.

7.
Mol Biotechnol ; 53(3): 237-48, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22367692

RESUMO

A cDNA-AFLP approach was used to identify transcript and/or genes specifically expressed in response to drought in tea. Drought was artificially induced and whole genome transcript profiling was done at three different stages-6 days before wilting, 3 days before wilting and at wilting stage of both tolerant and susceptible cultivars, and genetic differences was thus visualized as polymorphisms in the transcriptome. The cDNA-AFLP technique allowed genes and transcripts to be identified in the tolerant genotype (TV-23) whose expression is responsive to drought stress. The cluster analysis revealed two types of clustering-type I separated the tolerant and susceptible cultivar, whereas type II separated the time point of sample and this may be grouped as early and late responsive transcripts. 108 transcript derived fragments were identified as differentially expressed in tolerant genotypes of which 89 sequences could be obtained. Fifty-nine of them showed homology in the public databases. Functional ontology showed genes related to carbohydrate metabolism, response to stress, protein modification process and translation. Cluster I includes five fragments and cluster II includes 25 fragments. Other genes strongly expressed in response to drought in tolerant genotype would help us in identifying and determining the genetic basis of mechanisms involved in conferring drought tolerance in tea.


Assuntos
Secas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Chá/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Análise por Conglomerados , Fragmentação do DNA , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Genótipo , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA