Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Angew Chem Int Ed Engl ; 63(3): e202316459, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38018330

RESUMO

The development of highly efficient photocatalysts for conversion of carbon dioxide (CO2 ) with water (H2 O) into chemical fuels is of great importance for energy sustainability and carbon resource utilization. Herein, we demonstrated a facile hydrothermal method for in situ construction of subnanometric Bi metallic clusters in pyrochlore-Bi2 Sn2 O7 frameworks, leading to the remarkable improvements of photocatalytic performances for CO2 reduction into CO in the absence of sacrificial reagent. More specifically, an outstanding CO evolution activity of 114.1 µmol g-1 h-1 has been achieved, more than 20-fold improvement compared with the pristine Bi2 Sn2 O7 (5.7 µmol g-1 h-1 ). Detailed experiments together with in situ characterizations reveal that the spatially confined Bi clusters could significantly promote charge-separation/electron-enrichment and adsorption/activation of CO2 molecules, which provides highly efficient reaction channels to facilitate the generation of *COOH intermediate as well as the subsequent desorption of *CO towards CO formation. These demonstrations provide an important knowledge for precise design and fabrication of highly efficient photocatalysts for CO2 conversion into solar fuels.

2.
Angew Chem Int Ed Engl ; : e202407736, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735851

RESUMO

We have established a correlation between photocatalytic activity and dynamic structure/bond evolutions of BiOIO3-based photocatalysts during CO2 reduction by combining operando X-ray diffraction with photoelectron spectroscopy. More specifically, the selective photo-deposition of PtOx species on BiOIO3 (010) facets could effectively promote the electron enrichment on Bi active sites of (100) facets for facilitating the adsorption/activation of CO2 molecules, leading to the formation of Bi sites with high oxidation state and the shrink of crystalline structures. With introducing light irradiation to drive CO2 reduction, the Bi active sites with high oxidation states transformed into normal Bi3+ state, accompanying with the expansion of crystalline structures. Owing to the dynamic structure, bond, and chemical-state evolutions, a significant improvement of photocatalytic activity for CO evolution has been achieved on PtOx-BiOIO3 (195.0 µmol g-1 ⋅ h-1), much higher than the pristine (61.9 µmol g-1 ⋅ h-1) as well as metal-Pt decorated BiOIO3 (70.3 µmol g-1 ⋅ h-1) samples. This work provides new insights to correlate the intrinsically dynamic structure/bond evolutions with CO2 reduction activity, which may help to guide future photocatalyst design.

3.
Small ; 19(27): e2208118, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965021

RESUMO

The development of sp2 -carbon-linked covalent organic frameworks (sp2 c-COFs) as artificial photocatalysts for solar-driven conversion of CO2 into chemical feedstock has captured growing attention, but catalytic performance has been significantly limited by their intrinsic organic linkages. Here, a simple, yet efficient approach is reported to improve the CO2 photoreduction on metal-free sp2 c-COFs by rationally regulating their intrinsic π-conjugation. The incorporation of ethynyl groups into conjugated skeletons affords a significant improvement in π-conjugation and facilitates the photogenerated charge separation and transfer, thereby boosting the CO2 photoreduction in a solid-gas mode with only water vapor and CO2 . The resultant CO production rate reaches as high as 382.0 µmol g-1  h-1 , ranking at the top among all additive-free CO2 photoreduction catalysts. The simple modulation approach not only enables to achieve enhanced CO2 reduction performance but also simultaneously gives a rise to extend the understanding of structure-property relationship and offer new possibilities for the development of new π-conjugated COF-based artificial photocatalysts.

4.
Angew Chem Int Ed Engl ; 62(5): e202213067, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36346191

RESUMO

Photoelectrochemical syngas production from aqueous CO2 is a promising technique for carbon capture and utilization. Herein, we demonstrate the efficient and tunable syngas production by integrating a single-atom cobalt-catalyst-decorated α-Fe2 O3 photoanode with a bimetallic Ag/Pd alloy cathode. A record syngas production activity of 81.9 µmol cm-2 h-1 (CO/H2 ratio: ≈1 : 1) was achieved under artificial sunlight (AM 1.5 G) with an excellent durability. Systematic studies reveal that the Co single atoms effectively extract the holes from Fe2 O3 photoanodes and serve as active sites for promoting oxygen evolution. Simultaneously, the Pd and Ag atoms in bimetallic cathodes selectively adsorb CO2 and protons for facilitating CO production. Further incorporation with a photovoltaic, to allow solar light (>600 nm) to be utilized, yields a bias-free CO2 reduction device with solar-to-CO and solar-to-H2 conversion efficiencies up to 1.33 and 1.36 %, respectively.

5.
Angew Chem Int Ed Engl ; 61(30): e202204271, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35545533

RESUMO

Herein, we demonstrate that the surface anchoring of black phosphorus quantum dots (BPQDs) and bulk iron-doping in W18 O49 nanowires significantly promotes the photocatalytic activity toward N2 fixation into NH3 . More specifically, a NH3 production rate of up to 187.6 µmol g-1 h-1 could be achieved, nearly one order of magnitude higher than that of pristine W18 O49 (18.9 µmol g-1 h-1 ). Comprehensive experiments and density-functional theory calculations reveal that Fe-doping could enhance the reducing ability of photo-generated electrons by decreasing the work function and elevating the defect band (d-band) centers. Additionally, the surface BPQDs anchoring could facilitate the N2 adsorption/activation owing to the increased adsorption energy and advantaged W-P dimer bonding-mode. Therefore, synergizing the surface BPQD anchoring and bulk Fe-doping remarkably enhanced the photocatalytic activity of W18 O49 nanowires for NH3 production.

6.
Angew Chem Int Ed Engl ; 59(43): 18990-18995, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32666681

RESUMO

Understanding the origin of formation and active sites of oxygen evolution reaction (OER) cocatalysts is highly required for solar photoelectrochemical (PEC) devices that generate hydrogen efficiently from water. Herein, we employed a simple pH-modulated method for in situ growth of FeNi oxyhydroxide ultrathin layers on BiVO4 photoanodes, resulting in one of the highest currently known PEC activities of 5.8 mA cm-2 (1.23 VRHE , AM 1.5 G) accompanied with an excellent stability. More importantly, both comparative experiments and density functional theory (DFT) studies clearly reveal that the selective formation of Bi-O-Fe interfacial bonds mainly contributes the enhanced OER activities, while the construction of V-O-Ni interfacial bonds effectively restrains the dissolution of V5+ ions and promotes the OER stability. Thereby, the synergy between iron and nickel of FeNi oxyhydroxides significantly improved the PEC water oxidation properties of BiVO4 photoanodes.

7.
Angew Chem Int Ed Engl ; 59(15): 6224-6229, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31922641

RESUMO

Single-atom catalysts are promising platforms for heterogeneous catalysis, especially for clean energy conversion, storage, and utilization. Although great efforts have been made to examine the bonding and oxidation state of single-atom catalysts before and/or after catalytic reactions, when information about dynamic evolution is not sufficient, the underlying mechanisms are often overlooked. Herein, we report the direct observation of the charge transfer and bond evolution of a single-atom Pt/C3 N4 catalyst in photocatalytic water splitting by synchronous illumination X-ray photoelectron spectroscopy. Specifically, under light excitation, we observed Pt-N bond cleavage to form a Pt0 species and the corresponding C=N bond reconstruction; these features could not be detected on the metallic platinum-decorated C3 N4 catalyst. As expected, H2 production activity (14.7 mmol h-1 g-1 ) was enhanced significantly with the single-atom Pt/C3 N4 catalyst as compared to metallic Pt-C3 N4 (0.74 mmol h-1 g-1 ).

8.
Small ; 15(5): e1970008, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30706668

RESUMO

Small 2018, 14, 1704464 The above article, published online on February 27, 2018 in Wiley Online Library (https://onlinelibrary.wiley.com), has been retracted by agreement between the corresponding authors, the journal Editor-in-Chief, José Oliveira, and Wiley-VCH Verlag GmbH & Co. KGaA. Although the authors stand by the scientific content of the paper, the retraction has been agreed upon due to material (Figures 1j and 1k) collected by the first author in an external lab being included in the publication without the consent of the third party. L. Wang, K. Marcus, X. Huang, Z. Shen, Y. Yang, Y. Bi, Small 2018, 14, 1704464; https://doi.org/10.1002/smll.201704464.

9.
Angew Chem Int Ed Engl ; 58(40): 14229-14233, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369193

RESUMO

Oxygen vacancy (Vo) on transition metal oxides plays a crucial role in determining their chemical/physical properties. Conversely, the capability to directly detect the changing process of oxygen vacancies (Vos) will be important to realize their full potentials in the related fields. Herein, with a novel synchronous illumination X-ray photoelectron spectroscopy (SI-XPS) technique, we found that the surface Vos (surf-Vos) exhibit a strong selectivity for binding with the water molecules, and sequentially capture an oxygen atom to achieve the anisotropic self-healing of surface lattice oxygen. After this self-healing process, the survived subsurface Vos (sub-Vos) promote the charge excitation from Ti to O atoms due to the enriched electron located on low-coordinated Ti sites. However, the excessive sub-Vos would block the charge separation and transfer to TiO2 surfaces resulted from the destroyed atomic structures. These findings open a new pathway to explore the dynamic changes of Vos and their roles on catalytic properties, not only in metal oxides, but in crystalline materials more generally.

10.
Small ; 14(14): e1704464, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29484810

RESUMO

An Ar atmospheric treatment is rationally used to etch and activate hematite nanoflakes (NFs) as photoanodes toward enhanced photoelectrochemical water oxidation. The formation of a highly ordered hematite nanorods (NRs) array containing a high density of oxygen vacancy is successfully prepared through in situ reduction of NFs in Ar atmosphere. Furthermore, a hematite (104) plane and an iron suboxide layer at the absorber/back-contact interface are formed. The material defects produced by a thermal oxidation method can be critical for the morphology transformation from 2D NFs to 1D NRs. The resulting hematite NR photoanodes show high efficiency toward solar water splitting with improved light harvesting capabilities, leading to an enhanced photoresponse due to the artificially formed oxygen vacancies.

11.
Angew Chem Int Ed Engl ; 57(8): 2248-2252, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29333765

RESUMO

Photoelectrochemical (PEC) water splitting is a promising method for storing solar energy in the form of hydrogen fuel, but it is greatly hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Herein, a facile solution impregnation method is developed for growing ultrathin (2 nm) highly crystalline ß-FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes. These exhibited a remarkable photocurrent density of 4.3 mA cm-2 at 1.23 V (vs. reversible hydrogen electrode (RHE), AM 1.5 G), which is approximately two times higher than that of amorphous FeOOH fabricated by electrodeposition. Systematic studies reveal that the excellent PEC activity should be attributed to their ultrathin crystalline structure and abundant oxygen vacancies, which could effectively facilitate the hole transport/trapping and provide more active sites for water oxidation.

12.
J Am Chem Soc ; 138(9): 2917-20, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26924454

RESUMO

Synchronous illumination X-ray photoelectron spectroscopy (SIXPS) was employed for the first time to directly identify the photogenerated charge separation and transfer on anatase TiO2 single-crystals with selectively etched {001} facets. More specifically, for the TiO2 crystals with intact {001} and {101} facets, most of photogenerated charge carriers rapidly recombined, and no evident electron-hole separation was detected. With selectively etching on {001} facets, high efficient charge separation via hole transfer to titanium and electron to oxygen was clearly observed. However, when the {001} facets were completely etched into a hollow structure, the recombination for photogenerated electron-hole pairs would dominate again. These demonstrations clearly reveal that the appropriate corrosion on {001} facets could facilitate more efficient electron-hole separation and transfer. As expected, the optimized TiO2 microcrystals with etched {001} facets could achieve a hydrogen generation rate of 74.3 µmol/h/g, which is nearly 7 times higher than the intact-TiO2 crystals.

13.
J Am Chem Soc ; 138(40): 13289-13297, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27643711

RESUMO

Efficient generation of active oxygen-related radicals plays an essential role in boosting advanced oxidation process. To promote photocatalytic oxidation for gaseous pollutant over g-C3N4, a solid-gas interfacial Fenton reaction is coupled into alkalinized g-C3N4-based photocatalyst to effectively convert photocatalytic generation of H2O2 into oxygen-related radicals. This system includes light energy as power, alkalinized g-C3N4-based photocatalyst as an in situ and robust H2O2 generator, and surface-decorated Fe3+ as a trigger of H2O2 conversion, which attains highly efficient and universal activity for photodegradation of volatile organic compounds (VOCs). Taking the photooxidation of isopropanol as model reaction, this system achieves a photoactivity of 2-3 orders of magnitude higher than that of pristine g-C3N4, which corresponds to a high apparent quantum yield of 49% at around 420 nm. In-situ electron spin resonance (ESR) spectroscopy and sacrificial-reagent incorporated photocatalytic characterizations indicate that the notable photoactivity promotion could be ascribed to the collaboration between photocarriers (electrons and holes) and Fenton process to produce abundant and reactive oxygen-related radicals. The strategy of coupling solid-gas interfacial Fenton process into semiconductor-based photocatalysis provides a facile and promising solution to the remediation of air pollution via solar energy.

14.
Chemistry ; 22(17): 5844-8, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26868192

RESUMO

Herein, porous Bi/Bi2 MoO6 nanoparticles have been prepared by a facile in-situ reduction approach. Moreover, the morphology and Bi content of product could be controlled by varying the reaction time. By controlled fabrication, the desired porous Bi2 MoO6 nanostructure with incorporation of Bi was obtained and exhibited high photoelectric and photocatalytic activity. In particular, the samples yield a photocurrent density of 320 µA cm(-2) , which is 3.2 times that of the pure Bi2 MoO6 nanosheet (100 µA cm(-2) ) under the same conditions. UV/Vis diffuse reflectance spectroscopy analysis confirmed the surface plasmon resonance in the as-prepared porous nanoparticles. The improved photoelectric properties could be the synergistic effect of the porous structure with large surface area and effective electron-hole separations between Bi and Bi2 MoO6 .

15.
Phys Chem Chem Phys ; 18(7): 5091-4, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26814422

RESUMO

Herein, we demonstrate the synthesis of a Bi2MoO6 nanorod array followed by the deposition of a BiVO4 absorber layer. This heterojunction yielded a photocurrent density of 250 µA cm(-2) at 0.8 VSCE, which is 21 times that produced by a planar Bi2MoO6 array under the same conditions. Moreover, in situ X-ray photoelectron spectroscopy clearly confirmed the improvement of the electron transport and charge separation afforded by the heterostructure, features that efficiently enhanced the photoelectrochemical properties of the array.

16.
Chem Soc Rev ; 44(21): 7808-28, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26204436

RESUMO

Photocatalysis is a promising technology that can contribute to renewable energy production from water and water purification. In order to further develop the field and meet industrial requirements, it is imperative to focus on advancing high efficiency visible light photocatalysts, such as silver phosphate (Ag3PO4). This review aims to highlight the recent progress made in the field, focusing on oxygen production from water, and organic contaminant decomposition using Ag3PO4. The most important advances are discussed and explained in detail, including semiconductor-semiconductor junctions, metal-semiconductor junctions, exposing facet control, and fundamental understanding using advanced spectroscopies and computational chemistry. The review then concludes by critically summarising both findings and current perspectives, and ultimately how the field might best advance in the near future.

17.
Chemistry ; 20(9): 2654-62, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24482071

RESUMO

In recent decades, solar-driven hydrogen production over semiconductors has attracted tremendous interest owing to the global energy and environmental crisis. Among various semiconductor materials, TiO2 exhibits outstanding photocatalytic properties and has been extensively applied in diverse photocatalytic and photoelectric systems. However, two major drawbacks limit practical applications, namely, high charge-recombination rate and poor visible-light utilization. In this work, heterostructured TiO2 nanotube arrays grafted with Cr-doped SrTiO3 nanocubes were fabricated by simply controlling the kinetics of hydrothermal reactions. It was found that coupling TiO2 nanotube arrays with regular SrTiO3 nanocubes can significantly improve the charge separation. Meanwhile, doping Cr cations into SrTiO3 nanocubes proved to be an effective and feasible approach to enhance remarkably the visible-light response, which was also confirmed by theoretical calculations. As a result, the rate of photoelectrochemical hydrogen evolution of these novel heteronanostructures is an order of magnitude larger than those of TiO2 nanotube arrays and other previously reported SrTiO3 /TiO2 nanocomposites under visible-light irradiation. Furthermore, the as-prepared Cr-doped SrTiO3 /TiO2 heterostructures exhibit excellent durability and stability, which are favorable for practical hydrogen production and photoelectric nanodevices.

18.
Langmuir ; 29(9): 3116-24, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23391307

RESUMO

Nanomultiple CaFe2O4/ZnFe2O4pn junctions are prepared by a pulsed laser deposition method to explore their photoelectrochemical properties as the photoelectrodes. It is demonstrated that the multiple-pn-junction structure is favorable to enhancing the photocurrent density and the onset potential of the photoelectrode. Furthermore, the 20-junction photoelectrode-based PEC cell yields a high open circuit photovoltage of up to 0.97 V, which is much higher than that for a single pn junction photoelectrode PEC cell that yields an open circuit photovoltage of 0.13 V. A multiple-junction band structure model is assumed to describe the behavior of the CaFe2O4/ZnFe2O4 multiple-junction photoelectrodes. It is suggested that the open circuit photovoltage is dominated by the number of pn junctions in a multiple-junction photoelectrode and the carrier transfer inside the photoelectrode is improved by narrowing the single-layer thickness. These findings provide a new approach to designing the multiple-junction structure to improve the PEC properties of the photoelectrodes.

19.
J Am Chem Soc ; 134(4): 1974-7, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22280023

RESUMO

A strategy of reaction-environment modulation was employed to change the surface property of a semiconductor photocatalyst to enhance its photocatalytic performance. Surface alkalinization induced by a high alkalinity of the solution environment significantly shifted the surface energy band of a SrTiO(3) photocatalyst to a more negative level, supplying a strong potential for H(2)O reduction and consequently promoting the photocatalytic efficiency of H(2) evolution. This mechanism is also applicable for visible-light-sensitive La,Cr-codoped SrTiO(3) photocatalyst, which hence, could achieve a high apparent quantum efficiency of 25.6% for H(2) evolution in CH(3)OH aqueous solution containing 5 M NaOH at an incident wavelength of 425 ± 12 nm.


Assuntos
Álcalis/química , Hidrogênio/química , Óxidos/química , Estrôncio/química , Titânio/química , Catálise , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
20.
Chemistry ; 18(45): 14272-5, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23018652

RESUMO

Thinking outside the box: The position- and number-selective growth of Ag nanocrystals on Ag(3)PO(4) submicro-cubes by an in situ reduction technique is demonstrated (see figure). These new Ag/Ag(3)PO(4) heterocubes exhibit higher photocatalytic activities than pure Ag(3)PO(4) cubes for the degradation of organic dyes under visible-light irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA