Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1366336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113837

RESUMO

Streptomycetes are well-known antibiotic producers possessing in their genomes numerous silent biosynthetic pathways that might direct the biosynthesis of novel bio-active specialized metabolites. It is thus of great interest to find ways to enhance the expression of these pathways to discover most needed novel antibiotics. In this study, we demonstrated that the over-expression of acetyltransferase SCO0988 up-regulated the production of specialized metabolites and accelerated sporulation of the weak antibiotic producer, Streptomyces lividans and that the deletion of this gene had opposite effects in the strong antibiotic producer, Streptomyces coelicolor. The comparative analysis of the acetylome of a S. lividans strain over-expressing sco0988 with that of the original strain revealed that SCO0988 acetylates a broad range of proteins of various pathways including BldKB/SCO5113, the extracellular solute-binding protein of an ABC-transporter involved in the up-take of a signal oligopeptide of the quorum sensing pathway. The up-take of this oligopeptide triggers the "bald cascade" that regulates positively specialized metabolism, aerial mycelium formation and sporulation in S. coelicolor. Interestingly, BldKB/SCO5113 was over-acetylated on four Lysine residues, including Lys425, upon SCO0988 over-expression. The bald phenotype of a bldKB mutant could be complemented by native bldKB but not by variant of bldKB in which the Lys425 was replaced by arginine, an amino acid that could not be acetylated or by glutamine, an amino acid that is expected to mimic acetylated lysine. Our study demonstrated that Lys425 was a critical residue for BldKB function but was inconclusive concerning the impact of acetylation of Lys425 on BldKB function.

2.
J Hazard Mater ; 466: 133571, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266588

RESUMO

Microbe-mediated DBP (dibutyl phthalate) mineralization is acknowledged to be affected by diverse extracellular factors. However, little is known about the regulatory effects from quorum sensing (QS) signals. In this study, extracellularly applied QS signals A-like (hydroxymethyl dihydrofuran) was discovered to significantly enhance DBP degradation efficiency in Streptomyces sp. SH5. Monobutyl phthalate, protocatechuic acid and beta-ketoadipate were discovered as degradation intermediates by HPLC-TOF-MS/MS. Multi-omics analysis revealed the up-regulation of multiple hydrolases, transferases and decarboxylases that potentially contributed to A-like accelerated DBP degradation. Transcription of Orf2708, an orthologue of global transcriptional activator, was significantly induced by A-like. Orf2708 was demonstrated to interact specifically with the promoter of hydrolase orf2879 gene by EMSA, and the overexpression of orf2879 led to an enhanced DBP degradation in SH5. Taken together with the molecular docking studies showing the stability of ligand-receptor complex of A-like and its potential receptor Orf3712, a hierarchical regulatory cascade underlying the QS signal mediated DBP degradation was proposed as A-like/Orf3712 duplex formation, enhanced orf2708 expression and the downstream specific activation of hydrolase Orf2879. Our study presents the first evidence of GBLs-type promoted DBP degradation among bacteria, and the elucidated signal transduction path indicates a universal application potential of this activation strategy.


Assuntos
Percepção de Quorum , Espectrometria de Massas em Tandem , Simulação de Acoplamento Molecular , Dibutilftalato/metabolismo , Hidrolases/metabolismo , Transdução de Sinais
3.
Res Vet Sci ; 140: 198-202, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34525439

RESUMO

Marine Streptomyces S073 was previously shown to have strong anti-Vibrio activity, and its antibacterial mechanism was proposed to be associated with siderophore-mediated iron competition and other antagonistic agents. In this study, anti-Vibrio compounds produced by S073 were isolated by bioassay-guided fractionation using column chromatography and HPLC, and the target compound in the most active fraction was identified as dibutyl phthalate (DBP) by various spectroscopic analyses, including EI-MS, 1H NMR and 13C NMR. The DBP-producing capacity of S073 was 2.39 mg/L in ISP1 culture media. Pure DBP was demonstrated to have strong inhibitory activity on Vibiro parahaemolyticus growth with an MIC of 31.25 mg/L. When standard DBP was supplemented into the S073 fermentation broth in a gradient method, an additive inhibitory effect on V. parahaemolyticus was observed, indicating the important role of DBP in driving anti-Vibrio activity in S073 metabolites pool. A synergistic additive effect between DBP and florfenicol was observed in the Vibrio inhibition. These results indicate that, to achieve Vibrio-inhibition, S073 exerted multifaceted strategies, which included DBP-mediated antagonism and siderophore-governed iron competition. The application potential of S073 as an aquaculture probiotic was evaluated, and the safety risks associated with the endocrine disruptor attributes of DBP were discussed.


Assuntos
Probióticos , Streptomyces , Vibrio , Animais , Aquicultura , Dibutilftalato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA