Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39344029

RESUMO

Granular hydrogels, formed by jamming microgels suspension, are promising materials for three-dimensional bioprinting applications. Despite their extensive use as support materials for embedded bioprinting, the influence of the particle's physical properties on the macroscale viscoelasticity on one hand and on the printing performance on the other hand remains unclear. Herein, we investigate the linear and nonlinear rheology of κ-carrageenan granular hydrogel through small- and large-amplitude oscillatory shear measurements. We tuned the granular hydrogel's properties by changing the stiffness (soft, medium, stiff) and the packing density of the individual microgels. Characterizations in the linear viscoelasticity regime revealed that the storage modulus of granular hydrogels is not a simple function of microgel stiffness and depends on the microgel packing density. At larger strains, increasing the microgel stiffness reduced the energy dissipation of the granular beds and increased the solid-fluid transition point. To understand how the different rheological properties of granular support materials influence embedded bioprinting, we examined the printing fidelity and cellular filament shrinkage within the granular beds. We found that microgels with low packing density diminished the printing quality, while stiff microgels promoted filament roughness. In addition, we found that highly packed stiff microgels significantly reduced the postprinting contraction of cellular filaments. Overall, this work provides a comprehensive knowledge of the rheology of granular hydrogels that can be used to rationally design support beds for bioprinting applications with specific characteristics.

2.
Int J Biol Macromol ; 279(Pt 4): 135244, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39270886

RESUMO

The three-dimensional network architecture of hydrogels significantly influences their mechanical and physical properties; therefore, understanding them is essential for designing optimized hydrogel-based biomaterials. This study presents a comparative analysis of two hybrid hydrogels composed of konjac glucomannan (KGM) and kappa carrageenan (KCAR) with the same stiffness (5.2-5.7 kPa and 1.6-1.7 kPa) thus similar cross-linking density but different network architectures: a classic network formed by extended polysaccharide interactions and a nanogel junction network where nanoscale cross-linked KCAR (KCAR-NGs) links KGM chains. The mechanical behavior, dissolution, and diffusion characteristics were examined, revealing that the classic network demonstrates superior tensile resistance, elongation, and solvent-induced swelling resistance, leading to slower dissolution rates and higher viscosity. Conversely, the nanogel junction network offers higher permeability for small molecules and faster dissolution, suggesting a more open network structure. These findings highlight the nanogel-based hydrogels' advantages for biomedical applications requiring stability, permeability, and rapid dissolution without high temperatures or chelating agents. This study underscores the potential of nanogel junction networks to balance hydrogel stiffness and permeability, advancing the design of hydrogel-based biomaterials.


Assuntos
Carragenina , Hidrogéis , Mananas , Nanogéis , Mananas/química , Carragenina/química , Hidrogéis/química , Nanogéis/química , Viscosidade , Permeabilidade , Materiais Biocompatíveis/química
3.
J Microencapsul ; 30(6): 580-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23489012

RESUMO

Here we present the newly developed "solvent exchange" method that overcomes the challenge of encapsulating hydrophobic compounds within nanoparticle of water soluble polymers. Our studies involved the model polymer polyvinylpyrrolidone (PVP) and the hydrophobic dye Nile red. We found that the minimum molecular weight of the polymer required for nanoparticle formation was 49 KDa. Dynamic Light Scattering (DLS) and Cryo-Transmission Electron Microscopy (cryo-TEM) studies revealed spherical nanoparticles with an average diameter ranging from 20 to 33 nm. Encapsulation efficiency was evaluated using UV spectroscopy and found to be around 94%. The nanocarriers were found to be highly stable; less than 2% of Nile red release from nanoparticles after the addition of NaCl. Nanoparticles containing Nile red were able to penetrate into glioma cells. The solvent exchange method was proved to be applicable for other model hydrophobic drug molecules including ketoprofen, ibuprofen and indomethacin, as well as other solvents.


Assuntos
Portadores de Fármacos/química , Corantes Fluorescentes/administração & dosagem , Nanopartículas/química , Oxazinas/administração & dosagem , Povidona/química , Cátions/química , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas
4.
Drug Deliv Transl Res ; 13(5): 1228-1245, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36050621

RESUMO

Oral cancers affect millions of people globally, with increasing incidences among adults aged 35 and above. Poor drug uptake by lesions in the oral cavity following systemic administration, as well as limited localized treatment modalities for oral tumors, result in poor patient quality of life and high mortality. Here, we describe a solid, dissolvable, bioadhesive alginate patch containing freeze-dried doxorubicin-loaded liposomes as a local treatment for oral tumors located on the tongue. By varying the alginate-to-liposome ratio in the mucoadhesive patch, we could control the degree of bioadhesion to the tongue and the release profile of the drug-loaded liposomes from the matrix. In vitro, exposing squamous cell carcinoma (SCC) to the alginate mucoadhesive patch or tablet resulted in dose-dependent cancer-cell death. In vivo, the efficacy of the local treatment was demonstrated in mice bearing orthotopic SCC tumors in the tongue. The bioadhesive patch, applied directly above the lesion, significantly reduced the tumor size and treatment-associated side effects compared to implanted patches or systemic drug administration. This study demonstrates that local bioadhesive therapies are effective in treating cancers of the oral cavity.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Camundongos , Animais , Lipossomos , Qualidade de Vida , Neoplasias Bucais/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Alginatos
5.
Adv Sci (Weinh) ; 9(34): e2200882, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36261395

RESUMO

3D bioprinting holds great promise for tissue engineering, with extrusion bioprinting in suspended hydrogels becoming the leading bioprinting technique in recent years. In this method, living cells are incorporated within bioinks, extruded layer by layer into a granular support material followed by gelation of the bioink through diverse cross-linking mechanisms. This approach offers high fidelity and precise fabrication of complex structures mimicking living tissue properties. However, the transition of cell mass mixed with the bioink into functional native-like tissue requires post-printing cultivation in vitro. An often-overlooked drawback of 3D bioprinting is the nonuniform shrinkage and deformation of printed constructs during the post-printing tissue maturation period, leading to highly variable engineered constructs with unpredictable size and shape. This limitation poses a challenge for the technology to meet applicative requirements. A novel technology of "print-and-grow," involving 3D bioprinting and subsequent cultivation in κ-Carrageenan-based microgels (CarGrow) for days is presented. CarGrow enhances the long-term structural stability of the printed objects by providing mechanical support. Moreover, this technology provides a possibility for live imaging to monitor tissue maturation. The "print-and-grow" method demonstrates accurate bioprinting with high tissue viability and functionality while preserving the construct's shape and size.

6.
Langmuir ; 27(11): 6977-86, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21542599

RESUMO

Nanostructured hydrogels based on "smart" polymer conjugates of poloxamers and protein molecules were developed in order to form stimulus-responsive materials with bioactive properties for 3-D cell culture. Functionalized Pluronic F127 was covalently attached to a fibrinopeptide backbone and cross-linked into a structurally versatile and mechanically stable polymer network endowed with bioactivity and temperature-responsive structural features. Small angle X-ray scattering and transmission electron microscopy combined with rheology were used to characterize the structural and mechanical features of this biosynthetic conjugate, both in solution and in hydrogel form. The temperature at which the chemical cross-linking of F127-fibrinopeptide conjugates was initiated had a profound influence on the mechanical properties of the thermo-responsive hydrogel. The analysis of the scattering data revealed modification in the structure of the protein backbone resulting from increases in ambient temperature, whereas the structure of the polymer was not affected by ambient temperature. The hydrogel cross-linking temperature also had a major influence on the modulus of the hydrogel, which was rationally correlated to the molecular structure of the polymer network. The hydrogel structure exhibited a small mesh size when cross-linked at low temperatures and a larger mesh size when cross-linked at higher temperatures. The mesh size was nicely correlated to the mechanical properties of the hydrogels at the respective cross-linking temperatures. The schematic charts that model this material's behavior help to illustrate the relationship that exists between the molecular structure, the cross-linking temperature, and the temperature-responsive features for this class of protein-polymer conjugates. The precise control over structural and mechanical properties that can be achieved with this bioactive hydrogel material is essential in designing a tissue-engineering scaffold for clinical applications.


Assuntos
Fibrinogênio/química , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Microscopia Crioeletrônica , Fibrinogênio/biossíntese , Fibrinogênio/metabolismo , Poloxâmero/química , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
7.
Carbohydr Polym ; 269: 118274, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294306

RESUMO

This study explores hydrogels based on the physical interaction between soluble pectin and chitosan nanogels. A simple technique for creating chitosan nanogels of controllable size was developed based on a two-step process: physical cross-linking with tripolyphosphate (TPP) and chemical cross-linking with genipin. The particles were stable at acidic pH, which allowed hydrogel formation. Thixotropy experiments demonstrated that the concentration but not the size of the nanogels strongly affected the gel shear modulus. The influence of the post-assembly conditions, including exposure to monovalent salts (NaCl, NaI, and NaF) and pH (2.5 or 5.5), on the gel swelling and mechanical properties was studied. Small angle x-ray scattering (SAXS) results provide evidence that these physical hydrogels are indeed a cross-linked network. These experiments provided insights into the influence of hydrogen bonds and electrostatic interactions on the gel network.

8.
Polymers (Basel) ; 13(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466959

RESUMO

We developed and characterized a new hydrogel system based on the physical and chemical interactions of pectin partially modified with thiol groups and chitosan modified with acrylate end groups. Gelation occurred at high pectin thiol ratios, indicating that a low acrylated chitosan concentration in the hydrogel had a profound effect on the cross-linking. Turbidity, Fourier transform infrared spectroscopy, and free thiol determination analyses were performed to determine the relationships of the different bonds inside the gel. At low pH values below the pKa of chitosan, more electrostatic interactions were formed between opposite charges, but at high pH values, the Michael-type addition reaction between acrylate and thiol took place, creating harder hydrogels. Swelling experiments and Young's modulus measurements were performed to study the structure and properties of the resultant hydrogels. The nanostructure was examined using small-angle X-ray scattering. The texture profile analysis showed a unique property of hydrogel adhesiveness. By implementing changes in the preparation procedure, we controlled the hydrogel properties. This hybrid hydrogel system can be a good candidate for a wide range of biomedical applications, such as a mucosal biomimetic surface for mucoadhesive testing.

9.
J Sep Sci ; 33(11): 1673-81, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20397214

RESUMO

A novel approach for enhancing protein recognition in molecularly imprinted hydrogel (MIH) is presented. This approach was developed based on the hypothesis that the number of specific binding sites created in the previously described MIH is very small, thus attempts to enhance the capacity result in most cases in additional non-specific binding and loss of selectivity. Thus, blocking the non-specific binding sites could lead to higher capacities and better selectivity. To test this hypothesis, MIH interpenetrating networks designed to block non-specific binding sites were synthesized using two separate stages of polymerization. Re-binding of the template protein (lysozyme) and a competitor protein (cytochrome C) was measured, and the results were compared with the similar experiment performed using a control non-imprinted hydrogel and a "conventional" MIH. The imprinting efficacy of the MIH interpenetrating network was found to be much higher than that of the controls. Furthermore, competitive adsorption assays have demonstrated the superiority of the new formulation.


Assuntos
Hidrogéis , Proteínas/química , Adsorção , Animais , Técnicas de Química Analítica , Galinhas , Citocromos c/química , Cavalos , Concentração de Íons de Hidrogênio , Muramidase/química
10.
J Mater Sci Mater Med ; 21(7): 2027-34, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20379764

RESUMO

We propose a novel cross-linked mucoadhesive system that can interact covalently with mucin type glycoprotein, thus providing both strong bonding to mucosa as well as ability to function as a sustained release matrix. The strong bonding results from Michael type addition reaction between an acrylate end group on a polymer and the sulfide end group of the mucin type glycoprotein. A proof of concept is provided using a polyehtylene glycol hydrogel formed in situ from polyehtylene glycol di-acrylate (PEG-DA) macromers. The ability of PEG-DA to create interactions with mucin type glycoproteins was verified using nuclear magnetic resonance (NMR) and rheology experiments. NMR studies have detected disappearance of the PEG-DA's vinyl protons upon mucin addition, whereas rheology measurements have shown a viscosity increase. These results provide an evidence for the formation of mucin-polymer covalent bond. The ability PEG-DA to attach to mucus and promote mucoadhesion was evaluated by tensile measurements. PEG-DA adhered at strength comparable to other covalently interacting mucoadhesive polymers. Furthermore, PEG-DA was found to be a suitable candidate for sustained release of the hydrophilic drug Ibuprofen.


Assuntos
Acrilatos/química , Compostos de Sulfidrila/química , Animais , Mucinas/química , Mucosa/metabolismo , Polietilenoglicóis , Polímeros/química , Reologia , Suínos , Viscosidade
11.
J Mater Sci Mater Med ; 21(1): 73-80, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19693654

RESUMO

Controllable bio-synthetic polymeric hydrogels made from fibrinogen-poly(ethylene glycol) adducts have been successfully employed in tissue engineering. The structural consequences of PEG conjugation to fibrinogen (i.e., PEGylation) in such a hydrogel network are not fully understood. The current investigation details the structural alterations caused to the reduced fibrinogen polypeptides by the covalent attachment of linear or branched PEG chains. The structure of PEGylated fibrinogen polypeptides were comprehensively characterized using small angle X-ray scattering, light scattering, and cryo-transmission electron microscopy. These characterizations concur that the bio-synthetic hybrids self-assemble into elongated objects, having a protein core of about 50 A in diameter decorated with multiple PEG chains. Conjugates with branched PEG chains were shorter, and have lower average molecular weight compared to conjugates with linear chains. The diameter of the protein core of both samples was similar, suggesting a tail-to-head aggregation of the PEGylated fibrinogen polypeptide. A more complete understanding of this unique structural arrangement can provide further insight into the full extent of biofunctional accessibility in a biomaterial that combines the advantages of synthetic polymers with bioactive proteins.


Assuntos
Fibrinogênio/metabolismo , Polietilenoglicóis/metabolismo , Polímeros/química , Animais , Bovinos , Dicroísmo Circular , Microscopia Crioeletrônica/métodos , Fibrinogênio/química , Luz , Modelos Biológicos , Peso Molecular , Peptídeos/química , Peptídeos/metabolismo , Polietilenoglicóis/química , Polímeros/metabolismo , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Difração de Raios X
12.
Int J Pharm ; 573: 118739, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31705968

RESUMO

Nanoparticle-based mucosal drug delivery is a promising method to increase the residence time of a drug in the mucosa. It is known that the stability of polysaccharide-based nanoparticles in aqueous solutions is limited, due to hydrolysis; hence the long-term stability of a formulation is usually improved by freeze-drying. The aim of this study was to investigate the effect of cryoprotection and freeze-drying on the physical and chemical properties of mucoadhesive acrylated chitosan (ACS) nanoparticles including the potential of these carriers to deliver drugs. The results showed that the most effective cryoprotection was achieved using sucrose. The incorporation of a hydrophilic macromolecular drug, dextran sulfate, increased the nanoparticle size and decreased the zeta potential for both fresh and freeze-dried nanoparticle formulations. In addition, the freeze-dried nanoparticles presented penetration across a mucus gel layer and the flow through technique revealed that short term mucoadhesive properties were not impaired. ACS nanoparticles were able to deliver a model drug across a mucin gel layer but could not improve drug penetration through the triple co-culture cell model that was used in order to mimic the small intestine epithelium.


Assuntos
Quitosana/química , Sulfato de Dextrana/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Acrilatos/química , Células CACO-2 , Sulfato de Dextrana/farmacocinética , Portadores de Fármacos/química , Estabilidade de Medicamentos , Liofilização , Células HT29 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mucosa/metabolismo , Tamanho da Partícula , Sacarose/química
13.
Polymers (Basel) ; 12(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192137

RESUMO

The capacity of a biomaterial to innately modulate cell behavior while meeting the mechanical property requirements of the implant is a much sought-after goal within bioengineering. Here we covalently incorporate soluble elastin into a gelatin-poly (ethylene glycol) (PEG) hydrogel for three-dimensional (3D) cell encapsulation to achieve these properties. The inclusion of elastin into a previously optimized gelatin-PEG hydrogel was then evaluated for effects on entrapped fibroblasts, with the aim to assess the hydrogel as an extracellular matrix (ECM)-mimicking 3D microenvironment for cellular guidance. Soluble elastin was incorporated both physically and covalently into novel gelatin/elastin hybrid PEG hydrogels with the aim to harness the cellular interactivity and mechanical tunability of both elastin and gelatin. This design allowed us to assess the benefits of elastin-containing hydrogels in guiding fibroblast activity for evaluation as a potential dermal replacement. It was found that a gelatin-PEG hydrogel with covalently conjugated elastin, supported neonatal fibroblast viability, promoted their proliferation from 7.3% to 13.5% and guided their behavior. The expression of collagen alpha-1(COL1A1) and elastin in gelatin/elastin hybrid gels increased 16-fold and 6-fold compared to control sample at day 9, respectively. Moreover, cells can be loaded into the hydrogel precursor solution, deposited, and the matrix cross-linked without affecting the incorporated cells adversely, thus enabling a potential injectable system for dermal wound healing.

14.
Carbohydr Polym ; 225: 115249, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31521268

RESUMO

The development of a polymer-nanogel hydrogel based on a pair of polysaccharides is reported for the first time. This new hydrogel exhibits self-healing properties due to physical interactions between soluble pectin chains and chitosan nanogels. The nanogels act as crosslinking agents between pectin chains, leading to the formation of thermos-responsive hydrogel. Due to the dynamic interactions between the chains and the nanogels, the formed network dissociate under applied shear, allowing the hydrogel to flow. Moreover, elimination of the applied shear results in exceptionally fast and comprehensive recovery of the storage modulus, reverting the mixture back into solid form. The viscosity and Young modulus increased with the nanogels concentration while the equilibrium swelling decreased as the nanogels concentration increased suggesting a direct relation between the cross-linking degree and nanogel content. This novel hydrogel displays network recovery suitable for injectable biomedical applications, while benefiting from the advantages of nanogels as carriers.

15.
J Pharm Sci ; 108(12): 3814-3822, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31491439

RESUMO

Mucoadhesive hybrid polymer/liposome paste is a new drug delivery system presenting controllable and tailorable delivery mechanism. By using mucoadhesive material, the delivery can be more specific and local. Here, we present a study investigating the effect of polymer type, concentration, functional end group, and cross-linking on the release profile of nanoliposomes from polymer pastes. Polymer pastes can be expected to combine the mucoadhesion mechanisms of dry and wet dosage forms but have not been studied extensively. To better understand the mucoadhesion of pastes, we investigated a series of pastes based on the same polymer and used different chemical modifications that can produce interactions at different levels. Native and thiolated polymers presented enhanced mucoadhesion in a wet environment in comparison to acrylated polymers which dissolved rapidly because of the enhanced solubility of PEG chains in water. Paste cross-linking resulted in a sustained release profile compared to non-cross-linked pastes. Pectin-SH pastes, especially 3% (w/v), showed a linear liposomal release profile which is ascribed to the combination of ionic cross-linking and disulfide bridging. By configuring the polymer type or concentration, we can control the release mechanisms and achieve distinct inherent properties which can be applied for diverse medical applications.


Assuntos
Lipossomos/química , Polímeros/química , Polissacarídeos/química , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Solubilidade
16.
Biophys J ; 94(7): 2914-25, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18178662

RESUMO

Recent studies have identified extracellular matrix (ECM) compliance as an influential factor in determining the fate of anchorage-dependent cells. We explore a method of examining the influence of ECM compliance on cell morphology and remodeling in three-dimensional culture. For this purpose, a biological ECM analog material was developed to pseudo-independently alter its biochemical and physical properties. A set of 18 material variants were prepared with shear modulus ranging from 10 to 700 Pa. Smooth muscle cells were encapsulated in these materials and time-lapse video microscopy was used to show a relationship between matrix modulus, proteolytic biodegradation, cell spreading, and cell compaction of the matrix. The proteolytic susceptibility of the matrix, the degree of matrix compaction, and the cell morphology were quantified for each of the material variants to correlate with the modulus data. The initial cell spreading into the hydrogel matrix was dependent on the proteolytic susceptibility of the materials, whereas the extent of cell compaction proved to be more correlated to the modulus of the material. Inhibition of matrix metalloproteinases profoundly affected initial cell spreading and remodeling even in the most compliant materials. We concluded that smooth muscle cells use proteolysis to form lamellipodia and tractional forces to contract and remodel their surrounding microenvironment. Matrix modulus can therefore be used to control the extent of cellular remodeling and compaction. This study further shows that the interconnection between matrix modulus and proteolytic resistance in the ECM may be partly uncoupled to provide insight into how cells interpret their physical three-dimensional microenvironment.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular/fisiologia , Mecanotransdução Celular/fisiologia , Miócitos de Músculo Liso/fisiologia , Peptídeo Hidrolases/metabolismo , Animais , Bovinos , Movimento Celular/fisiologia , Proliferação de Células , Elasticidade , Estresse Mecânico
17.
Polymers (Basel) ; 10(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30966139

RESUMO

The aim of this study was to investigate the effect of acrylate modification on the mucoadhesion of chitosan at the nanoscale. Nanoparticles were fabricated from acrylated chitosan (ACS) via ionic gelation with tripolyphosphate and were characterized in terms of size, zeta potential, stability, and nanoparticle yield. Chitosan (CS) nanoparticles, serving as a control, were fabricated using the same procedure. The mucoadhesion of the nanoparticles was evaluated using the flow-through method after different incubation periods. The retention percentages of ACS nanoparticles were found to be significantly higher than those of CS nanoparticles, for all studied time intervals. An additional indication for the increased mucoadhesion of ACS nanoparticles was the increase in particle size obtained from the mucin particle method, in which mucin and nanoparticles are mixed at different ratios. NMR data verified the presence of free acrylate groups on the ACS nanoparticles. Thus, the improved mucoadhesion could be due to a Michael-type addition reaction between the nanoparticles and thiol groups present in mucin glycoprotein, in addition to entanglements and hydrogen bonding. Overall, ACS nanoparticles exhibit enhanced mucoadhesion properties as compared to CS nanoparticles and could be used as vehicles for drug delivery systems.

18.
Int J Biol Macromol ; 111: 62-69, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29292143

RESUMO

Oral cancers are extremely common among adults with increasing incidences due to human papillomavirus, while treatment modalities are limited. This study aims to develop a new oral mucoadhesive delivery system based on the combination of alginate and liposomes. The polymer provides adhesion properties and induces local release of the drug-loaded carriers, while the liposomes protect the drug from degradation and improve its absorption into the cells. Three hybrid alginate/liposomes delivery systems were investigated: a hybrid paste, which presented excellent adhesive capabilities, yet fast burst release of 90% after 2h; a hybrid hydrogel, demonstrating controllable release rates of 5%, 30% or 60% after 2h but poor mucoadhesive properties. These findings led to the development of a hybrid cross-linked paste. Polymer retention studies demonstrated that 80% of the crosslinked paste was retained on tongue tissue compared to 50% retention of the non-cross-linked pastes, verifying its superior mucoadhesion. The hybrid cross-linked paste presented controllable release rate of 20% after 2h. Alginate paste incorporating doxorubicin loaded liposomes presented similar release rates and were highly effective in promoting cancer cell death. Thus, our innovative formulation, including both desired characteristics of mucoadhesion and sustained liposomes release, is an important milestone in the development of a new potential treatment for oral cancer.


Assuntos
Alginatos/química , Sistemas de Liberação de Medicamentos , Lipossomos/química , Neoplasias/tratamento farmacológico , Adesivos/química , Administração Oral , Alginatos/administração & dosagem , Quitosana/química , Composição de Medicamentos , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/química , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/química , Humanos , Hidrogéis/química , Lipossomos/administração & dosagem , Polímeros/química
19.
Macromol Biosci ; 7(12): 1280-9, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-17724788

RESUMO

Adhesive materials extracted from the brown algae Fucus Serratus were studied. These adhesives are composed of cross-linked alginate and polyphenols oxidized in the presence of KI or KBr. All formulations were capable of adhering to a variety of surfaces, however the adhesion properties were influenced by the halide used. SAXS and TEM experiments revealed that oxidized polyphenols self-assemble into chain-like objects, irrespective of the oxidation conditions. Yet, slight differences in the aggregate size were detected. QCM-D results showed that the kinetics of the oxidation was faster with iodide than with bromide. Moreover, oxidation with iodide generates stiffer networks, suggesting that the interaction between the alginate and the polyphenol could be the cause of the reduced adhesion.


Assuntos
Adesivos/metabolismo , Brometos/farmacologia , Fucus/metabolismo , Compostos de Potássio/farmacologia , Iodeto de Potássio/farmacologia , Alginatos/metabolismo , Cálcio , Reagentes de Ligações Cruzadas/farmacologia , Microscopia Crioeletrônica , Flavonoides/metabolismo , Fucus/efeitos dos fármacos , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Cinética , Nanoestruturas , Oxirredução/efeitos dos fármacos , Fenóis/metabolismo , Polietilenotereftalatos , Polímeros/metabolismo , Polifenóis , Espalhamento a Baixo Ângulo , Resistência ao Cisalhamento , Propriedades de Superfície/efeitos dos fármacos , Resistência à Tração , Difração de Raios X
20.
Int J Biol Macromol ; 101: 852-861, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28366853

RESUMO

Pectin-chitosan hydrogels are intriguing and relatively new type of physically crosslinked hydrogels. Here we present for the first time a study exploring the suitability of pectin-chitosan hydrogels to serve as drug carriers and the mechanism controlling the release patterns. Using drug release assays, we demonstrated sustained release of three model drugs (mesalamine, curcumin and progesterone) over a period of 24h in physiological conditions. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) experiments were used to characterize the interactions between the investigated drugs and the polymers. These experiments, as well as swelling analysis, support the claim that the magnitude of interactions strongly affect the release rates. These new pectin-chitosan thermoreversible hydrogels may improve the life style of many patients by reducing the daily uptake of chronic medicines.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Hidrogéis/química , Pectinas/química , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Mucosa Gástrica/metabolismo , Hidrogéis/metabolismo , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA