Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 27(45): 11738-11745, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34014001

RESUMO

Synthetic anion transporters show much promise as potential anti-cancer agents and therapeutics for diseases associated with mis-regulation of protein anion channels. In such applications high activity and anion selectivity are crucial to overcome competing proton or hydroxide transport which dissipates cellular pH gradients. Here, highly active bidentate halogen bonding and chalcogen bonding anion carriers based on electron deficient iodo- and telluromethyl-triazole derivatives are reported. Anion transport experiments in lipid bilayer vesicles reveal record nanomolar chloride transport activity for the bidentate halogen bonding anion carrier, and remarkably high chloride over proton/hydroxide selectivity for the chalcogen bonding anionophore. Computational studies provide further insight into the role of sigma-hole mediated anion recognition and desolvation at the membrane interface. Comparison with hydrogen bonding analogues demonstrates the importance of employing sigma-hole donor motifs in synthetic anionophores for achieving both high transport activity and selectivity.


Assuntos
Calcogênios , Halogênios , Ânions , Cloretos , Humanos , Ligação de Hidrogênio
2.
Chem Sci ; 13(33): 9531-9536, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091898

RESUMO

Stimuli-responsive transmembrane ion carriers allow for targeted and controllable transport activity, with potential applications as therapeutics for channelopathies and cancer, and in fundamental studies into ion transport phenomena. These applications require OFF-ON activation from a fully inactive state which does not exhibit background activity, but this remains challenging to achieve with synthetic transport systems. Here we introduce a novel mechanism for photo-gating mobile ion carriers, which involves modulating the mobility of the carriers within the lipid bilayer membrane. By appending a membrane-targeting anchor to the carrier using a photo-cleavable linker, the carrier's ion transport activity is fully switched off by suppressing its ability to shuttle between the two aqueous-membrane interfaces of the bilayer. The system can be reactivated rapidly in situ within the membrane by photo-triggered cleavage of the anchor to release the mobile ion carrier. This approach does not involve direct functionalization of the ion binding site of the carrier, and so does not require the de novo design of novel ion binding motifs to implement the photo-caging of activity. This work demonstrates that controlling the mobility of artificial transport systems enables precise control over activity, opening up new avenues for spatio-temporally targeted ionophores.

3.
Chem Sci ; 12(34): 11252-11274, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34567493

RESUMO

Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.

4.
Chem Sci ; 11(18): 4722-4729, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34122927

RESUMO

Transmembrane ion transport by synthetic anionophores is typically achieved using polar hydrogen bonding anion receptors. Here we show that readily accessible halogen and hydrogen bonding 1,2,3-triazole derivatives can efficiently mediate anion transport across lipid bilayer membranes with unusual anti-Hofmeister selectivity. Importantly, the results demonstrate that the iodo-triazole systems exhibit the highest reported activity to date for halogen bonding anionophores, and enhanced transport efficiency relative to the hydrogen bonding analogues. In contrast, the analogous fluoro-triazole systems, which are unable to form intermolecular interactions with anions, are inactive. The halogen bonding anionophores also exhibit a remarkable intrinsic chloride over hydroxide selectivity, which is usually observed only in more complex anionophore designs, in contrast to the readily accessible acyclic systems reported here. This highlights the potential of iodo-triazoles as synthetically accessible and versatile motifs for developing more efficient anion transport systems. Computational studies provide further insight into the nature of the anion-triazole intermolecular interactions, examining the origins of the observed transport activity and selectivity of the systems, and revealing the role of enhanced charge delocalisation in the halogen bonding anion complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA