RESUMO
Carbene transition-metal complexes have become a prevalent family of catalysts enabling numerous organic transformations. Their facile synthetic access is a matter of great importance. To this end, the Cu(I) -NHC transfer methodology has emerged as a powerful alternative presenting attractive advantages over other methods. Herein, we report the remarkable ability of copper to transfer not only NHCs but also other types of carbenes such as abnormal NHCs (aNHCs), cyclic (alkyl)(amino)carbenes (CAACs), and mesoionic carbenes (MICs) to various transition metal precursors.
RESUMO
Five new complexes [RuCl2(SIMes)(Ind)(O-pXC5H4)] bearing different para-substituted triphenylphosphites (X = H, OCH3, CF3, Cl, SF5 and CN) were synthesised and used to study the effect of the electronic properties of the phosphite on olefin metathesis activity. Investigations of the physical properties of the new ligands and complexes were performed using physicochemical and DFT calculations. The catalytic activity of the complexes was benchmarked in challenging ring closing metathesis transformations featuring the formation of tetra-substituted double bonds. Complex [RuCl2(SIMes)(Ind)P(O-pCF3C5H4)3] (3c) exhibited a particularly high catalytic activity, superior to state-of-the-art catalysts, and was further tested on a wide range of substrates.
RESUMO
We report the first example of BAC-Cu complex (BAC = bis(diisopropylamino)cyclopropenylidene) and its use as a carbene-transfer reagent, allowing access to Au-, Pd-, Ir- and Rh-BAC compounds. Catalytic experiments show the high activity of the [CuCl(BAC)] complex in Click chemistry.