Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34523684

RESUMO

The voltage-dependent anion channel (VDAC) is a ubiquitous channel in the outer membrane of the mitochondrion with multiple roles in protein, metabolite and small molecule transport. In mammalian cells, VDAC protein, as part of a larger complex including the inositol triphosphate receptor, has been shown to have a role in mediating contacts between the mitochondria and endoplasmic reticulum (ER). We identify VDAC of the pathogenic apicomplexan Toxoplasma gondii and demonstrate its importance for parasite growth. We show that VDAC is involved in protein import and metabolite transfer to mitochondria. Further, depletion of VDAC resulted in significant morphological changes in the mitochondrion and ER, suggesting a role in mediating contacts between these organelles in T. gondii. This article has an associated First Person interview with the first author of the paper.


Assuntos
Toxoplasma , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Transporte Proteico , Toxoplasma/genética , Toxoplasma/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
2.
PLoS Pathog ; 14(2): e1006836, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29470517

RESUMO

Apicomplexan parasites are global killers, being the causative agents of diseases like toxoplasmosis and malaria. These parasites are known to be hypersensitive to redox imbalance, yet little is understood about the cellular roles of their various redox regulators. The apicoplast, an essential plastid organelle, is a verified apicomplexan drug target. Nuclear-encoded apicoplast proteins traffic through the ER and multiple apicoplast sub-compartments to their place of function. We propose that thioredoxins contribute to the control of protein trafficking and of protein function within these apicoplast compartments. We studied the role of two Toxoplasma gondii apicoplast thioredoxins (TgATrx), both essential for parasite survival. By describing the cellular phenotypes of the conditional depletion of either of these redox regulated enzymes we show that each of them contributes to a different apicoplast biogenesis pathway. We provide evidence for TgATrx1's involvement in ER to apicoplast trafficking and TgATrx2 in the control of apicoplast gene expression components. Substrate pull-down further recognizes gene expression factors that interact with TgATrx2. We use genetic complementation to demonstrate that the function of both TgATrxs is dependent on their disulphide exchange activity. Finally, TgATrx2 is divergent from human thioredoxins. We demonstrate its activity in vitro thus providing scope for drug screening. Our study represents the first functional characterization of thioredoxins in Toxoplasma, highlights the importance of redox regulation of apicoplast functions and provides new tools to study redox biology in these parasites.


Assuntos
Apicoplastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Biogênese de Organelas , Tiorredoxinas/metabolismo , Toxoplasma/fisiologia , Sequência de Aminoácidos , Biomarcadores/metabolismo , Sequência Conservada , Evolução Molecular , Técnicas de Silenciamento de Genes , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiorredoxinas/química , Tiorredoxinas/genética , Toxoplasma/citologia , Toxoplasma/crescimento & desenvolvimento
3.
Biochem Soc Trans ; 47(4): 973-983, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31383817

RESUMO

Malaria continues to be one of the leading causes of human mortality in the world, and the therapies available are insufficient for eradication. Severe malaria is caused by the apicomplexan parasite Plasmodium falciparum Apicomplexan parasites, including the Plasmodium spp., are descendants of photosynthetic algae, and therefore they possess an essential plastid organelle, named the apicoplast. Since humans and animals have no plastids, the apicoplast is an attractive target for drug development. Indeed, after its discovery, the apicoplast was found to host the target pathways of some known antimalarial drugs, which motivated efforts for further research into its biological functions and biogenesis. Initially, many apicoplast inhibitions were found to result in 'delayed death', whereby parasite killing is seen only at the end of one invasion-egress cycle. This slow action is not in line with the current standard for antimalarials, which seeded scepticism about the potential of compounds targeting apicoplast functions as good candidates for drug development. Intriguingly, recent evidence of apicoplast inhibitors causing rapid killing could put this organelle back in the spotlight. We provide an overview of drugs known to inhibit apicoplast pathways, alongside recent findings in apicoplast biology that may provide new avenues for drug development.


Assuntos
Antimaláricos/farmacologia , Apicoplastos/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Animais , Apicoplastos/metabolismo , Humanos , Malária/parasitologia , Oxirredução , Plasmodium/metabolismo
4.
Molecules ; 24(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884752

RESUMO

Twelve propolis samples from different parts of Libya were investigated for their phytochemical constituents. Ethanol extracts of the samples and some purified compounds were tested against Trypanosoma brucei, Plasmodium falciparum and against two helminth species, Trichinella spiralis and Caenorhabditis elegans, showing various degrees of activity. Fourteen compounds were isolated from the propolis samples, including a novel compound Taxifolin-3-acetyl-4'-methyl ether (4), a flavanonol derivative. The crude extracts showed moderate activity against T. spiralis and C. elegans, while the purified compounds had low activity against P. falciparum. Anti-trypanosomal activity (EC50 = 0.7 µg/mL) was exhibited by a fraction containing a cardol identified as bilobol (10) and this fraction had no effect on Human Foreskin Fibroblasts (HFF), even at 2.0 mg/mL, thus demonstrating excellent selectivity. A metabolomics study was used to explore the mechanism of action of the fraction and it revealed significant disturbances in trypanosomal phospholipid metabolism, especially the formation of choline phospholipids. We conclude that a potent and highly selective new trypanocide may be present in the fraction.


Assuntos
Antiprotozoários/química , Proliferação de Células/efeitos dos fármacos , Própole/química , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/patogenicidade , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Humanos , Líbia , Metabolômica , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Polifenóis/química , Polifenóis/farmacologia , Própole/farmacologia , Trichinella spiralis/efeitos dos fármacos , Trichinella spiralis/patogenicidade , Trypanosoma brucei brucei/patogenicidade
5.
Environ Sci Pollut Res Int ; 28(19): 24270-24278, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-31939019

RESUMO

Natural extracts containing high polyphenolic concentration possess antibacterial, anti-parasitic and fungicidal activities. The present research characterises two extracts based on white grape marc, a winemaking by-product, describing their physicochemical features and antimicrobial capacities. The main components of these extracts are phenolic acids, flavan-3-ols and their gallates and flavonols and their glycosides. As a result of this complex composition, the extracts showed pronounced bioactivities with potential uses in agricultural, pharmaceutical and cosmetic industries. Polyphenol compounds were extracted by using hydro-organic solvent mixtures from the by-product of Albariño white wines (Galicia, NW Spain) production. The in vitro antimicrobial activity of these extracts was evaluated on Gram-positive and Gram-negative bacteria and Apicomplexan and Oomycota parasites. Microbial species investigated are causing agents of several human and animal diseases, such as foodborne illnesses (Bacillus cereus, Escherichia coli, Salmonella enterica, and Toxoplasma gondii), skin infections and/or mastitis (Staphylococcus aureus and Streptococcus uberis), malaria (Plasmodium falciparum) and plant infections as "chestnut ink" or "root rot" (Phytophthora cinnamomi). Both extracts showed activity against all the tested species, being nontoxic for the host. So, they could be used for the development of biocides to control a wide range of pathogenic agents and contribute to the enhancement of winemaking industry by-products.


Assuntos
Parasitos , Vitis , Animais , Antibacterianos/farmacologia , Bactérias , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais , Espanha , Streptococcus
6.
Int J Parasitol ; 51(6): 441-453, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713652

RESUMO

Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs.


Assuntos
Anopheles , Antimaláricos , Animais , Antimaláricos/uso terapêutico , Carbono , Oxirredução , Plasmodium falciparum/genética
7.
Methods Mol Biol ; 2071: 221-243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31758456

RESUMO

Genetic manipulation is a powerful tool to study gene function but identifying the direct and primary functional outcomes of any gene depletion is crucial for this strategy to be productive. This is a major challenge for the study of apicoplast biology, because, in the absence of an efficient isolation method, apicoplast functions must be assayed in the parasite. These assays should be performed dynamically from the time of gene depletion, and include standards and controls that separate direct from indirect phenotypes. Here, we describe a pipeline for apicoplast functional analysis and highlight relevant mutant T. gondii cell lines and apicoplast markers that are available in the field and that enhance the specificity of phenotype description.


Assuntos
Apicoplastos/metabolismo , Humanos , Organelas/metabolismo , Oxirredução , Plastídeos/metabolismo , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
PLoS One ; 11(5): e0155355, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27195790

RESUMO

Extracts from twelve samples of propolis collected from different regions of Libya were tested for their activity against Trypanosoma brucei, Leishmania donovani, Plasmodium falciparum, Crithidia fasciculata and Mycobacterium marinum and the cytotoxicity of the extracts was tested against mammalian cells. All the extracts were active to some degree against all of the protozoa and the mycobacterium, exhibiting a range of EC50 values between 1.65 and 53.6 µg/ml. The toxicity against mammalian cell lines was only moderate; the most active extract against the protozoan species, P2, displayed an IC50 value of 53.2 µg/ml. The extracts were profiled by using liquid chromatography coupled to high resolution mass spectrometry. The data sets were extracted using m/z Mine and the accurate masses of the features extracted were searched against the Dictionary of Natural Products (DNP). A principal component analysis (PCA) model was constructed which, in combination with hierarchical cluster analysis (HCA), divided the samples into five groups. The outlying groups had different sets of dominant compounds in the extracts, which could be characterised by their elemental composition. Orthogonal partial least squares (OPLS) analysis was used to link the activity of each extract against the different micro-organisms to particular components in the extracts.


Assuntos
Anti-Infecciosos/química , Antiprotozoários/química , Testes de Sensibilidade Microbiana , Própole/química , Animais , Anti-Infecciosos/farmacologia , Antiprotozoários/farmacologia , Produtos Biológicos/química , Cromatografia Líquida , Análise por Conglomerados , Crithidia fasciculata/efeitos dos fármacos , Feminino , Geografia , Humanos , Concentração Inibidora 50 , Análise dos Mínimos Quadrados , Leishmania donovani/efeitos dos fármacos , Líbia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium marinum/efeitos dos fármacos , Extratos Vegetais/química , Plasmodium falciparum/efeitos dos fármacos , Análise de Componente Principal , Própole/farmacologia , Software , Trypanosoma brucei brucei/efeitos dos fármacos , Células U937
9.
Biosci Rep ; 35(1)2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25387830

RESUMO

PDC (pyruvate dehydrogenase complex) is a multi-enzyme complex comprising an E1 (pyruvate decarboxylase), an E2 (dihydrolipomide acetyltransferase) and an E3 (dihydrolipoamide dehydrogenase). PDC catalyses the decarboxylation of pyruvate and forms acetyl-CoA and NADH. In the human malaria parasite Plasmodium falciparum, the single PDC is located exclusively in the apicoplast. Plasmodium PDC is essential for parasite survival in the mosquito vector and for late liver stage development in the human host, suggesting its suitability as a target for intervention strategies against malaria. Here, PfaE3 (P. falciparum apicoplast E3) was recombinantly expressed and characterized. Biochemical parameters were comparable with those determined for E3 from other organisms. A homology model for PfaE3 reveals an extra anti-parallel ß-strand at the position where human E3BP (E3-binding protein) interacts with E3; a parasite-specific feature that may be exploitable for drug discovery against PDC. To assess the biological role of Pfae3, it was deleted from P. falciparum and although the mutants are viable, they displayed a highly synchronous growth phenotype during intra-erythrocytic development. The mutants also showed changes in the expression of some mitochondrial and antioxidant proteins suggesting that deletion of Pfae3 impacts on the parasite's metabolic function with downstream effects on the parasite's redox homoeostasis and cell cycle.


Assuntos
Apicoplastos/enzimologia , Di-Hidrolipoamida Desidrogenase/química , Malária Falciparum/microbiologia , Plasmodium falciparum/enzimologia , Apicoplastos/química , Cristalografia por Raios X , Di-Hidrolipoamida Desidrogenase/isolamento & purificação , Humanos , Modelos Moleculares , Plasmodium falciparum/química , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA