Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 84(1): 12-13, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181754

RESUMO

A recent publication in Nature by Arnould et al.1 describes a novel chromatin compartment, termed "damaged" or "D compartment," that facilitates the repair of DNA double-strand breaks but also increases the risk of potentially oncogenic translocation formation.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Humanos , Cromatina/genética , Dano ao DNA , Translocação Genética , DNA/genética
2.
Nat Methods ; 21(7): 1245-1256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844629

RESUMO

Microscopy-based spatially resolved omic methods are transforming the life sciences. However, these methods rely on high numerical aperture objectives and cannot resolve crowded molecular targets, limiting the amount of extractable biological information. To overcome these limitations, here we develop Deconwolf, an open-source, user-friendly software for high-performance deconvolution of widefield fluorescence microscopy images, which efficiently runs on laptop computers. Deconwolf enables accurate quantification of crowded diffraction limited fluorescence dots in DNA and RNA fluorescence in situ hybridization images and allows robust detection of individual transcripts in tissue sections imaged with ×20 air objectives. Deconvolution of in situ spatial transcriptomics images with Deconwolf increased the number of transcripts identified more than threefold, while the application of Deconwolf to images obtained by fluorescence in situ sequencing of barcoded Oligopaint probes drastically improved chromosome tracing. Deconwolf greatly facilitates the use of deconvolution in many bioimaging applications.


Assuntos
Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Software , Microscopia de Fluorescência/métodos , Hibridização in Situ Fluorescente/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Camundongos , Humanos
3.
Nat Commun ; 15(1): 1768, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409079

RESUMO

Extrachromosomal circular DNAs (eccDNAs) have emerged as important intra-cellular mobile genetic elements that affect gene copy number and exert in trans regulatory roles within the cell nucleus. Here, we describe scCircle-seq, a method for profiling eccDNAs and unraveling their diversity and complexity in single cells. We implement and validate scCircle-seq in normal and cancer cell lines, demonstrating that most eccDNAs vary largely between cells and are stochastically inherited during cell division, although their genomic landscape is cell type-specific and can be used to accurately cluster cells of the same origin. eccDNAs are preferentially produced from chromatin regions enriched in H3K9me3 and H3K27me3 histone marks and are induced during replication stress conditions. Concomitant sequencing of eccDNAs and RNA from the same cell uncovers the absence of correlation between eccDNA copy number and gene expression levels, except for a few oncogenes, including MYC, contained within a large eccDNA in colorectal cancer cells. Lastly, we apply scCircle-seq to one prostate cancer and two breast cancer specimens, revealing cancer-specific eccDNA landscapes and a higher propensity of eccDNAs to form in amplified genomic regions. scCircle-seq is a scalable tool that can be used to dissect the complexity of eccDNAs across different cell and tissue types, and further expands the potential of eccDNAs for cancer diagnostics.


Assuntos
DNA Circular , DNA , Masculino , Humanos , DNA Circular/genética , Cromossomos , Linhagem Celular , Oncogenes
4.
Nat Commun ; 15(1): 3475, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658552

RESUMO

Somatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid cells form numerous small-sized subclones ranging from highly spatially localized to broadly spread subclones. In contrast, aneuploid cells do not form subclones and are detected throughout the prostate, including normal tissue regions. Highly localized pseudo-diploid subclones are confined within tumor-rich regions and carry deletions in multiple tumor-suppressor genes. Our study reveals that SCNAs are widespread in normal and tumor regions across the prostate in localized prostate cancer patients and suggests that a subset of pseudo-diploid cells drive tumorigenesis in the aging prostate.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias da Próstata , Análise de Célula Única , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Aneuploidia , Próstata/patologia , Próstata/metabolismo , Células Clonais , Diploide , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA