RESUMO
Chromatin misfolding has been implicated in cancer pathogenesis; yet, its role in therapy resistance remains unclear. Here, we systematically integrated sequencing and imaging data to examine the spatial and linear chromatin structures in targeted therapy-sensitive and -resistant human T cell acute lymphoblastic leukemia (T-ALL). We found widespread alterations in successive layers of chromatin organization including spatial compartments, contact domain boundaries, and enhancer positioning upon the emergence of targeted therapy resistance. The reorganization of genome folding structures closely coincides with the restructuring of chromatin activity and redistribution of architectural proteins. Mechanistically, the derepression and repositioning of the B-lineage-determining transcription factor EBF1 from the heterochromatic nuclear envelope to the euchromatic interior instructs widespread genome refolding and promotes therapy resistance in leukemic T cells. Together, our findings suggest that lineage-determining transcription factors can instruct changes in genome topology as a driving force for epigenetic adaptations in targeted therapy resistance.
Assuntos
Cromatina , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Cromatina/genética , Reposicionamento de Medicamentos , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfócitos T/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
PURPOSE: Young adults with isocitrate-dehydrogenase wild-type (IDH-WT) glioblastoma (GBM) represent a rare, understudied population compared to pediatric high-grade glioma, IDH-mutant GBM, or IDH-WT GBM in older patients. We aimed to explore the prognostic impact of epidermal growth factor receptor copy number gain (EGFR CN gain), one of the most common genetic alterations in IDH-WT glioma, in young adults with IDH-WT GBM. METHODS: We performed a retrospective cohort study of patients 18-45 years old with newly diagnosed, IDH-WT GBM whose tumors underwent next-generation sequencing at our institution between 2014 and 2018. The impact of EGFR CN gain on time to tumor progression (TTP) and overall survival (OS) was assessed. A validation cohort of patients 18-45 years old with IDH-WT GBM was analyzed from The Cancer Genome Atlas (TCGA). RESULTS: Ten of 28 patients (36%) from our institution had EGFR CN gain, which was associated with shorter TTP (median 6.5 vs. 11.9 months; p = 0.06) and OS (median 16.3 vs. 23.5 months; p = 0.047). The negative prognostic impact of EGFR CN gain on OS persisted in a multivariate model (HR 6.40, 95% CI 1.3-31.0, p = 0.02). In the TCGA cohort (N = 43), EGFR CN gain was associated with shorter TTP and worse OS, although these did not reach statistical significance (TTP, median 11.5 vs. 14.4 months, p = 0.18; OS, median 23.6 vs. 27.8 months; p = 0.18). CONCLUSIONS: EGFR CN gain may be associated with inferior outcomes in young adults with newly diagnosed, IDH-WT GBM, suggesting a potential role for targeting EGFR in this population.
Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Receptores ErbB/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Isocitrato Desidrogenase/genética , Adolescente , Adulto , Variações do Número de Cópias de DNA , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Adulto JovemRESUMO
Evaluation of suspected myeloid neoplasms involves testing for recurrent, diagnostically and therapeutically relevant genetic alterations. Current molecular testing requires multiple technologies, different domains of expertise, and unconnected workflows, resulting in variable, lengthy turnaround times that can delay treatment. To address this unmet clinical need, we evaluated the Oncomine Myeloid Assay GX panel on the Ion Torrent Genexus platform, a rapid, integrated nucleic acid to report next-generation sequencing platform for detecting clinically relevant genetic aberrations in myeloid disorders. Specimens included synthetic DNA (101 targets) and RNA (9 targets) controls and real-world nucleic acid material derived from bone marrow or peripheral blood samples (40 patients). Ion Torrent Genexus results and performance indices were compared with those obtained from clinically validated genomic testing workflows in 2 separate clinical laboratories. The Ion Torrent Genexus identified 100% of DNA and RNA control variants. For primary patient specimens, the Ion Torrent Genexus reported 82 of 107 DNA variants and 19 of 19 RNA gene fusions identified on clinically validated assays, yielding an 80% overall detection rate. Reanalysis of exported, unfiltered Ion Torrent Genexus data revealed 15 DNA variants not called by the filtered on-board bioinformatics pipeline, yielding a 92% potential detection rate. These results hold promise for the implementation of an integrated next-generation sequencing system to rapidly detect genetic aberrations, facilitating accurate, genomics-based diagnoses and accelerated time to precision therapies in myeloid neoplasms.
Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , RNA/genética , Mutação , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA/genética , SemicondutoresRESUMO
Copy number variants (CNVs) comprise a class of mutation which includes deletion, duplication, or amplification events that range in size from smaller than a single-gene or exon, to the size of a full chromosome. These changes can affect gene expression levels and are thus implicated in disease, including cancer. Although a variety of tools and methodologies exist to detect CNVs using data from massively parallel sequencing (also referred to as next-generation sequencing), it can be difficult to appreciate the copy number profile in a list format or as a static image. CNViz is a freely accessible R/Bioconductor package that launches an interactive R/Shiny visualization tool to facilitate review of copy number data. As inputs, it requires genomic locations and corresponding copy number ratios for probe, gene, and/or segment-level data. If supplied, loss of heterozygosity (LOH), focal variant data [single nucleotide variants (SNVs) and small insertions and deletions (indels)], and metadata (e.g., specimen purity and ploidy) can also be incorporated into the visualization. The CNViz R/Bioconductor package is an easy-to-use tool built with the intent of encouraging visualization and exploration of copy number variation. CNViz can be used in a clinical setting as well as for research to study patterns in human cancers more broadly. The intuitive interface allows users to visualize the copy number profile of a specimen, dynamically change resolution to explore gene and probe-level copy number changes, and simultaneously integrate LOH, SNV, and indel findings. CNViz is available for download as an R package via Bioconductor. An example of the application is available at rebeccagreenblatt.shinyapps.io/cnviz_example.
RESUMO
Acute myeloid leukemia (AML) is typically characterized clinically for prognostic purposes using both cytogenetic and molecular characteristics. However, both cytogenetic and molecular risk stratification schemas are varied and few reports have studied correlations between these schemas. We have performed a single institution retrospective review of cytogenetic and molecular classifications of AMLs seen at Penn Medicine between 2013 and 2018. One-hundred fourty-four cases were characterized according to European Leukemia Net (ELN) or Medical Research Council (MRC) criteria for cytogenetics and results compared to molecular profiling. When we analyzed the most common sequencing study results within the risk groupings, negative sequencing studies and FLT3 mutations were common in favorable AMLs, intermediate AMLs had mutations in FLT3, NPM1, DNMT3A and IDH2, while adverse AMLs had a high prevalence of TP53 mutations. We next grouped the genes on the panel by their proteins' functions and found mutations in signaling pathway genes to be common in favorable AMLs while tumor suppressors were commonly mutated in adverse AMLs. AMLs grouped by the type of chromosomal abnormality present showed that FLT3 mutations were common in AMLs with a trisomy while TP53 mutations were common in AMLs with a monosomy or a deletion. TP53 mutations are especially common in AMLs with a monosomal karyotype and often overlap with 17p loss. Interestingly, although all AMLs with TP53 mutations have a defect in the response to DNA damage, expression of P53 protein before and after irradiation is not consistently predicted by phenotype. Overall, these studies confirm the genetic complexity of AML which does not fall into simple patterns of cooperating mutations.
Assuntos
Análise Citogenética , Perfilação da Expressão Gênica , Leucemia Mieloide Aguda/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Estudos de Coortes , Raios gama , Humanos , Mutação/genética , Nucleofosmina , Medição de Risco , Fatores de Risco , Proteína Supressora de Tumor p53/genéticaRESUMO
PURPOSE: Recurrent internal tandem duplication (ITD) mutations are observed in various cancers including acute myeloid leukemia (AML), where ITD mutations in tyrosine kinase receptor FLT3 are associated with poor prognostic outcomes. Several FLT3 inhibitors (FLT3i) are in clinical trials for high-risk FLT3-ITD-positive AML. However, the variability of survival following FLT3i treatment suggests that the mere presence of FLT3-ITD mutations might not guarantee effective clinical response. Motivated by the heterogeneity of FLT3-ITD mutations, we investigated the effects of FLT3-ITD structural features on the response of AML patients to treatment.Experimental Design: We developed the HeatITup (HEAT diffusion for Internal Tandem dUPlication) algorithm to identify and quantitate ITD structural features including nucleotide composition. Using HeatITup, we studied the impact of ITD structural features on the clinical response to FLT3i and induction chemotherapy in FLT3-ITD-positive AML patients. RESULTS: HeatITup accurately identifies and classifies ITDs into newly defined categories of "typical" or "atypical" based on their nucleotide composition. A typical ITD's insert sequence completely matches the wild-type FLT3, whereas an atypical ITD's insert contains nucleotides exogenous to the wild-type FLT3. Our analysis shows marked divergence between typical and atypical ITD mutation features. Furthermore, our data suggest that AML patients carrying typical FLT3-ITDs benefited significantly more from both FLT3i and induction chemotherapy treatments than patients with atypical FLT3-ITDs. CONCLUSIONS: These results underscore the importance of structural discernment of complex somatic mutations such as ITDs in progressing toward personalized treatment of AML patients, and enable researchers and clinicians to unravel ITD complexity using the provided software.See related commentary by Gallipoli and Huntly, p. 460.
Assuntos
Duplicação Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/genética , Adulto , Idoso , Sequência de Bases , Biologia Computacional/métodos , Análise Mutacional de DNA , Bases de Dados Genéticas , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Prognóstico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do Tratamento , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidoresRESUMO
One caveat of next-generation sequencing (NGS)-based clinical oncology testing is the high amount of input DNA required. We sought to develop a focused NGS panel that could capture hotspot regions in relevant genes requiring 0.5-10â¯ng input DNA. The resulting Penn Precision Panel (PPP) targeted 20 genes containing clinically significant variants relevant to many cancers. One hundred twenty-three samples were analyzed, including 83 solid tumor specimens derived from FFPE. Various input quantities of DNA (0.5-10â¯ng) were amplified with content-specific PCR primer pools, then sequenced on a MiSeq instrument (Illumina, Inc.) via paired-end, 2â¯×â¯186 base pair reads to an average read depth of greater than 6500x. Variants were detected using an in-house analysis pipeline. Clinical sensitivity and specificity were assessed using results from our previously validated solid tumor NGS panel; sensitivity of the PPP is 96.75% (387/400 variants) and specificity is 99.9% (8427/8428 base pairs). Variant allele frequencies (VAFs) are highly concordant across both assays (râ¯=â¯0.98 pâ¯<â¯0.0001). The PPP is a robust, clinically validated test optimized for low-yield solid tumor specimens, capturing a high percentage of clinically relevant variants found by larger commercially available NGS panels while using only 0.5-10â¯ng of input DNA.