Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Carcinog ; 56(2): 722-734, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27434882

RESUMO

Tumor cell invasion through the extracellular matrix is facilitated by the secretion of lysosome-associated proteases. As a common mechanism for secretion, lysosomes must first traffic to the cell periphery (anterograde trafficking), consistent with invasive cells often containing lysosomes closer to the plasma membrane compared to non-invasive cells. Epithelial to mesenchymal transition (EMT) is a transcriptionally driven program that promotes an invasive phenotype, and Zeb1 is one transcription factor that activates the mesenchymal gene expression program. The role of lysosome trafficking in EMT-driven invasion has not been previously investigated. We found that cells with increased levels of Zeb1 displayed lysosomes located closer to the cell periphery and demonstrated increased protease secretion and invasion in 3-dimensional (3D) cultures compared to their epithelial counterparts. Additionally, preventing anterograde lysosome trafficking via pharmacological inhibition of Na+/H+ exchanger 1 (NHE1) or shRNA depletion of ADP-ribosylation like protein 8b (Arl8b) reversed the invasive phenotype of mesenchymal cells, thus supporting a role for lysosome positioning in EMT-mediated tumor cell invasion. Immunoblot revealed that expression of Na+/H+ exchanger 1 correlated with Zeb1 expression. Furthermore, we found that the transcription factor Zeb1 binds to the Na+/H+ exchanger 1 promoter, suggesting that Zeb1 directly controls Na+/H+ transcription. Collectively, these results provide insight into a novel mechanism regulating Na+/H+ exchanger 1 expression and support a role for anterograde lysosome trafficking in Zeb1-driven cancer progression. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Transporte de Cátions/genética , Invasividade Neoplásica/genética , Neoplasias da Próstata/genética , Trocadores de Sódio-Hidrogênio/genética , Regulação para Cima , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Invasividade Neoplásica/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Trocador 1 de Sódio-Hidrogênio , Ativação Transcricional , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
2.
Mol Carcinog ; 49(8): 739-49, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20623641

RESUMO

The HGF/c-Met pathway is an important regulator of signaling pathways responsible for invasion and metastasis of most human cancers, including prostate cancer. Exposure of DU145 prostate tumor cells to HGF stimulates the PI3-kinase and MAPK pathways, leading to increased scattering, motility, and invasion, which was prevented by the addition of EGCG. EGCG acted at the level of preventing phosphorylation of tyrosines 1234/1235 in the kinase domain of the c-Met receptor without effecting dimerization. HGF-induced changes were independent of the formation of reactive oxygen species, suggesting that EGCG functioned independent of its antioxidant ability. ECG, another tea polyphenol, was as effective as EGCG, while EGC and EC were less effective. EGCG added up to 4 h after the addition of HGF still blocked cell scattering and reduced the HGF-induced phosphorylation of c-Met, Akt, and Erk, suggesting that EGCG could act both by preventing activation of c-Met by HGF and by attenuating the activity of pathways already induced by HGF. HGF did not activate the MAPK and PI3-K pathways in cells treated with methyl-beta-cyclodextrin (mCD) to remove cholesterol. Furthermore, subcellular fractionation approaches demonstrated that only phosphorylated c-Met accumulated in Triton X-100 membrane insoluble fractions, supporting a role for lipid rafts in regulating c-Met signaling. Finally, EGCG treatment inhibited DiIC16 incorporation into membrane lipid ordered domains, and cholesterol partially inhibited the EGCG effects on signaling. Together, these results suggest that green tea polyphenols with the R1 galloyl group prevent activation of the c-Met receptor by altering the structure or function of lipid rafts.


Assuntos
Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Movimento Celular/efeitos dos fármacos , Células/metabolismo , Humanos , Masculino , Octoxinol/metabolismo , Octoxinol/farmacologia , Fenóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosforilação/efeitos dos fármacos , Polifenóis , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Chá , beta-Ciclodextrinas
3.
Breast Cancer Res Treat ; 117(1): 31-44, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18787947

RESUMO

TIMP-1 (Tissue inhibitor of matrix metalloproteinase-1) is typically associated with inhibition of matrix metalloproteinases (MMP) induced invasion. However, TIMP-1 is overexpressed in many malignancies and is associated with poor prognosis in breast cancer. The mechanisms by which TIMP-1 promotes tumorigenesis are unclear. Reduced levels of TIMP-1 mediated by shRNA in MDA-MB-231 breast cancer cells had no effect on cellular physiology in vitro or tumor growth in SCID mice compared to vector control MDA-MB-231 cells. However, overexpression of TIMP-1 in MDA-MB-231 cells resulted in inhibition of cell invasion and enhanced phosphorylation of p38 MAPK and AKT in vitro. Additionally, treatment of parental MDA-MB-231 cells with purified TIMP-1 protein led to activation of p38 MAPK and MKK 3/6. cDNA array analysis demonstrated that high expression of TIMP-1 in MDA-MB-231 cells resulted in alterations in expression of approximately 200 genes, 1.5 fold or greater compared to vector control cells (P < 0.1). Real-time RT-PCR confirmed changes in expression of several genes associated with cancer progression including DAPK1, FGFR4 and MAPK13. In vivo, high TIMP-1 expression induced tumor growth in SCID mice compared to vector control cells and increased tumor vessel density. Affymetrix array analysis of vector control and TIMP-1 MDA-MB-231 xenograft tumors revealed that TIMP-1 altered expression of approximately 600 genes in vivo, including MMP1, MMP13, S100A14, S100P, Rab25 and ID4. These combined observations suggest that the effects of TIMP-1 differ significantly in a 2-D environment compared to the 3-D environment and that TIMP-1 stimulates tumor growth.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Inibidor Tecidual de Metaloproteinase-1/genética , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/genética
4.
J Invest Dermatol ; 124(2): 457-65, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15675968

RESUMO

The deregulation of the sonic hedgehog (shh) signaling pathway in epidermal keratinocytes is a primary event leading to the formation of basal cell carcinoma (BCC). The mechanisms by which this pathway exerts this effect remain largely undefined. We demonstrate that overexpression of shh in HaCaT keratinocytes grown in organotypic cultures induced a basal cell phenotype, as evidenced by their morphology, trans-epithelial staining of cytokeratin 14, and suprabasalar proliferation. Shh also induced keratinocyte infiltration into the underlying collagen matrix. Constitutive shh expression was associated with increased phosphorylation of the epidermal growth factor receptor (EGFR) as well as jnk and raf. Additionally, levels of c-jun and matrix metalloproteinase-9 (MMP-9) protein were elevated in shh-expressing cells. Inhibition of EGFR activity with either the tyrphostin, AG1478, or blocking receptor-ligand interaction with the monoclonal antibody, C-225, blocked matrix infiltration. In contrast, exogenously supplied EGF significantly augmented the invasiveness of the HaCaT cells. These observations provide insight into the impact of deregulated shh on epidermal homeostasis. The findings further suggest that an intact EGF signaling axis cooperates with shh and is a critical mediator of matrix invasion in a tumor type characterized by disrupted shh.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Queratinócitos/metabolismo , Transdução de Sinais/fisiologia , Transativadores/genética , Transativadores/metabolismo , Carcinoma Basocelular/fisiopatologia , Linhagem Celular , Matriz Extracelular/metabolismo , Expressão Gênica , Proteínas Hedgehog , Humanos , Queratinócitos/citologia , Técnicas de Cultura de Órgãos , Fenótipo , Neoplasias Cutâneas/fisiopatologia , Transfecção
5.
PLoS One ; 9(10): e109208, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25272043

RESUMO

The presence of reactive stroma, predominantly composed of myofibroblasts, is directly associated with and drives prostate cancer progression. We have previously shown that (-)-Epigallocatechin-3-gallate (EGCG), in the form of Polyphenon E, significantly decreases serum levels of HGF and VEGF in prostate cancer patients. Given that HGF and VEGF are secreted from surrounding tumor myofibroblasts, these observations suggested that EGCG may inhibit prostate cancer-associated myofibroblast differentiation. Herein, we demonstrate that micromolar combinations of EGCG and a second polyphenol, luteolin, synergistically inhibit TGF-ß-induced myofibroblast phenotypes in prostate fibroblast cell lines, as observed primarily by potentiation of fibronectin expression. Functionally, EGCG and luteolin inhibited TGF-ß-induced extracellular matrix contraction, an enhancer of tumor cell invasion. EGCG and luteolin inhibited downstream TGF-ß-induced signaling, including activation of ERK and AKT, respectively, but mechanistically, only ERK appeared to be necessary for TGF-ß-induced fibronectin expression. Furthermore, neither EGCG nor luteolin affected Smad signaling or nuclear translocation. Rho signaling was found to be necessary for TGF-ß-induced fibronectin expression and EGCG and luteolin each reduced RhoA activation. Finally, EGCG and luteolin were shown to reverse TGF-ß-induced fibronectin expression, implicating that these natural compounds may be useful not only in preventing but also in treating already activated myofibroblasts and the diseases they cause, including cancer. The ability of EGCG and luteolin to synergistically target myofibroblasts suggests that combined clinical use of these compounds could prevent or reverse cancer progression through targeting the tumor microenvironment, in addition to the tumor itself.


Assuntos
Catequina/análogos & derivados , MAP Quinases Reguladas por Sinal Extracelular/efeitos adversos , Luteolina/farmacologia , Miofibroblastos/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/efeitos adversos , Catequina/farmacologia , Linhagem Celular , Sinergismo Farmacológico , Humanos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Fenótipo
6.
Cancer Prev Res (Phila) ; 2(7): 673-82, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19542190

RESUMO

The purpose of this study was to determine the effects of short-term supplementation with the active compounds in green tea on serum biomarkers in patients with prostate cancer. Twenty-six men with positive prostate biopsies and scheduled for radical prostatectomy were given daily doses of Polyphenon E, which contained 800 mg of (-)-epigallocatechin-3-gallate (EGCG) and lesser amounts of (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin-3-gallate (a total of 1.3 g of tea polyphenols), until time of radical prostatectomy. Serum was collected before initiation of the drug study and on the day of prostatectomy. Serum biomarkers hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF)-I, IGF binding protein-3 (IGFBP-3), and prostate-specific antigen (PSA) were analyzed by ELISA. Toxicity was monitored primarily through liver function enzymes. Changes in serum components were analyzed statistically using the Wilcoxon signed rank test. Cancer-associated fibroblasts were treated with EGCG, and HGF and VEGF protein and mRNA levels were measured. HGF, VEGF, PSA, IGF-I, IGFBP-3, and the IGF-I/IGFBP-3 ratio decreased significantly during the study. All of the liver function tests also decreased, five of them significantly: total protein, albumin, aspartate aminotransferase, alkaline phosphatase, and amylase. The decrease in HGF and VEGF was confirmed in prostate cancer-associated fibroblasts in vitro. Our results show a significant reduction in serum levels of PSA, HGF, and VEGF in men with prostate cancer after brief treatment with EGCG (Polyphenon E), with no elevation of liver enzymes. These findings support a potential role for Polyphenon E in the treatment or prevention of prostate cancer.


Assuntos
Flavonoides/química , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , Fenóis/química , Antígeno Prostático Específico/biossíntese , Neoplasias da Próstata/metabolismo , Chá , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores Tumorais , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Pessoa de Meia-Idade , Polifenóis , RNA Mensageiro/metabolismo
7.
Clin Cancer Res ; 15(15): 4885-94, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19638461

RESUMO

PURPOSE: Activation of the c-Met and epidermal growth factor receptors (EGFR) promotes the growth and survival of non-small cell lung cancer (NSCLC). Specific receptor antagonists have shown efficacy in the clinic, but tumors often become resistant to these therapies. We investigated the ability of (-)-epigallocatechin-3-gallate (EGCG) to inhibit cell proliferation, and c-Met receptor and EGFR kinase activation in several NSCLC cell lines. EXPERIMENTAL DESIGN: NSCLC cell lines with variable sensitivity to the EGFR antagonist erlotinib were studied. Cell growth was evaluated using proliferation and colony formation assays. Kinase activation was assessed via Western blot analysis. Experiments were conducted with EGCG, the EGFR antagonist erlotinib, and the c-Met inhibitor SU11274. The antagonists were also tested in a xenograft model using SCID mice. RESULTS: EGCG inhibited cell proliferation in erlotinib-sensitive and -resistant cell lines, including those with c-Met overexpression, and acquired resistance to erlotinib. The combination of erlotinib and EGCG resulted in greater inhibition of cell proliferation and colony formation than either agent alone. EGCG also completely inhibited ligand-induced c-Met phosphorylation and partially inhibited EGFR phosphorylation. The triple combination of EGCG/erlotinib/SU11274 resulted in a greater inhibition of proliferation than EGCG with erlotinib. Finally, the combination of EGCG and erlotinib significantly slowed the growth rate of H460 xenografts. CONCLUSION: EGCG is a potent inhibitor of cell proliferation, independent of EGFR inhibition, in several NSCLC cell lines, including those resistant to both EGFR kinase inhibitors and those overexpressing c-Met. Therefore, EGCG might be a useful agent to study as an adjunct to other anticancer agents.


Assuntos
Anticarcinógenos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Catequina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Catequina/farmacologia , Linhagem Celular Tumoral , Cloridrato de Erlotinib , Humanos , Indóis/farmacologia , Masculino , Camundongos , Camundongos SCID , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
ACS Nano ; 3(7): 1877-85, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19534472

RESUMO

Natural polyphenols with previously demonstrated anticancer potential, epigallocatechin gallate (EGCG), tannic acid, curcumin, and theaflavin, were encased into gelatin-based 200 nm nanoparticles consisting of a soft gel-like interior with or without a surrounding LbL shell of polyelectrolytes (polystyrene sulfonate/polyallylamine hydrochloride, polyglutamic acid/poly-l-lysine, dextran sulfate/protamine sulfate, carboxymethyl cellulose/gelatin, type A) assembled using the layer-by-layer technique. The characteristics of polyphenol loading and factors affecting their release from the nanocapsules were investigated. Nanoparticle-encapsulated EGCG retained its biological activity and blocked hepatocyte growth factor (HGF)-induced intracellular signaling in the breast cancer cell line MBA-MD-231 as potently as free EGCG.

9.
J Biol Chem ; 279(2): 1197-205, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14555646

RESUMO

Basal cell carcinomas (BCCs) express high levels of the antiapoptotic proto-oncogene, bcl-2, and we have shown that bcl-2 contributes to the malignant phenotype in a transgenic mouse model. The basis of bcl-2 transcriptional regulation in keratinocytes is unknown. The sonic hedgehog (SHH) signaling pathway is frequently altered in BCCs. Mediators of shh signaling include the downstream transactivator, gli-1, and transrepressor, gli-3. Seven candidate gli binding sites were identified in the bcl-2 promoter. Cotransfection of increasing amounts of gli-1 in keratinoycytes resulted in a corresponding dose-dependent increase in bcl-2 promoter luciferase activity. Gli-1 was also able to up-regulate endogenous bcl-2. Gli-3 cotransfection resulted in no significant changes in bcl-2 promoter activity compared with control. Gli-3 has been demonstrated to be proteolytically processed into an N-terminal repressive form that can inhibit downstream transactivation by gli-1. Gli-3 mutants possessing only the N-terminal region or the C-terminal region were made and used in luciferase assays. The N terminus of gli-3 inhibited gli-1 transactivation of the bcl-2 promoter. Gel shift analysis and luciferase assays demonstrated that gli binding site 4 (-428 to -420), is important for gli transcriptional regulation. Skin samples from transgenic mice expressing an RU486 gli-1 transgene exhibited significantly higher levels of endogenous bcl-2 protein in epidermal keratinocytes as assessed by immunoblotting and immunohistochemistry. Together, these findings provide consistent evidence that gli proteins can transcriptionally regulate the bcl-2 promoter and that gli-3 can inhibit transactivation by gli-1. These studies further suggest that one consequence of the deregulation of shh signaling in BCC is the up-regulation of bcl-2.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Células 3T3 , Animais , Sítios de Ligação , Western Blotting , Células Cultivadas , Técnicas de Cocultura , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Éxons , Proteínas Hedgehog , Humanos , Immunoblotting , Imuno-Histoquímica , Queratinócitos/metabolismo , Fatores de Transcrição Kruppel-Like , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mifepristona/farmacologia , Modelos Genéticos , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proto-Oncogene Mas , Transdução de Sinais , Ativação Transcricional , Transfecção , Transgenes , Regulação para Cima , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA