Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Cell ; 64(5): 875-887, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889448

RESUMO

Ras pathway signaling plays a critical role in cell growth control and is often upregulated in human cancer. The Raf kinases selectively interact with GTP-bound Ras and are important effectors of Ras signaling, functioning as the initiating kinases in the ERK cascade. Here, we identify a route for the phospho-inhibition of Ras/Raf/MEK/ERK pathway signaling that is mediated by the stress-activated JNK cascade. We find that key Ras pathway components, the RasGEF Sos1 and the Rafs, are phosphorylated on multiple S/TP sites in response to JNK activation and that the hyperphosphorylation of these sites renders the Rafs and Sos1 unresponsive to upstream signals. This phospho-regulatory circuit is engaged by cancer therapeutics, such as rigosertib and paclitaxel/Taxol, that activate JNK through mitotic and oxidative stress as well as by physiological regulators of the JNK cascade and may function as a signaling checkpoint to suppress the Ras pathway during conditions of cellular stress.


Assuntos
Glicina/análogos & derivados , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Paclitaxel , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Sulfonas , Ativação Enzimática/efeitos dos fármacos , Glicina/farmacocinética , Glicina/farmacologia , Células HeLa , Humanos , Estresse Oxidativo , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Fosforilação , Sulfonas/farmacocinética , Sulfonas/farmacologia , Proteínas ras/metabolismo
2.
Biophys J ; 116(6): 1049-1063, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30846362

RESUMO

Deregulation of KRAS4b signaling pathway has been implicated in 30% of all cancers. Membrane localization of KRAS4b is an essential step for the initiation of the downstream signaling cascades that guide various cellular mechanisms. KRAS4b plasma membrane (PM) binding is mediated by the insertion of a prenylated moiety that is attached to the terminal carboxy-methylated cysteine, in addition to electrostatic interactions of its positively charged hypervariable region with anionic lipids. Calmodulin (CaM) has been suggested to selectively bind KRAS4b to act as a negative regulator of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway by displacing KRAS4b from the membrane. However, the mechanism by which CaM can recognize and displace KRAS4b from the membrane is not well understood. In this study, we employed biophysical and structural techniques to characterize this mechanism in detail. We show that KRAS4b prenylation is required for binding to CaM and that the hydrophobic pockets of CaM can accommodate the prenylated region of KRAS4b, which might represent a novel CaM-binding motif. Remarkably, prenylated KRAS4b forms a 2:1 stoichiometric complex with CaM in a nucleotide-independent manner. The interaction between prenylated KRAS4b and CaM is enthalpically driven, and electrostatic interactions also contribute to the formation of the complex. The prenylated KRAS4b terminal KSKTKC-farnesylation and carboxy-methylation is sufficient for binding and defines the minimal CaM-binding motif. This is the same region implicated in membrane and phosphodiesterase6-δ binding. Finally, we provide a structure-based docking model by which CaM binds to prenylated KRAS4b. Our data provide new insights into the KRAS4b-CaM interaction and suggest a possible mechanism whereby CaM can regulate KRAS4b membrane localization.


Assuntos
Calmodulina/metabolismo , Prenilação de Proteína , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Calmodulina/química , Humanos , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química
3.
Proc Natl Acad Sci U S A ; 113(44): E6766-E6775, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791178

RESUMO

Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated-methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated-methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated-methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated-methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein-protein interaction interface in KRAS4b-PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/química , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Prenilação de Proteína/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , 3',5'-GMP Cíclico Fosfodiesterases/genética , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Genes ras , Humanos , Metilação , Modelos Moleculares , Conformação Molecular , Mutação , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo
4.
ACS Pharmacol Transl Sci ; 7(7): 1983-1995, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022364

RESUMO

The KRAS gene plays a pivotal role in numerous cancers by encoding a GTPase that upon association with the plasma membrane activates the MAPK pathway, promoting cellular proliferation. In our study, we investigated small molecules that disrupt KRAS's membrane interaction, hypothesizing that such disruption could in turn inhibit mutant RAS signaling. Native mass spectrometry screening of KRAS-FMe identified compounds with a preference for interacting with the hypervariable region (HVR), and surface plasmon resonance (SPR) further refined our selection to graveoline as a compound exhibiting preferential HVR binding. Subsequent nuclear magnetic resonance (NMR) analysis showed that graveoline's interaction with KRAS depends on C-terminal O-methylation. Moreover, our findings revealed multiple interaction sites, suggesting weak engagement with the KRAS G domain. Using nanodiscs as a membrane mimetic, further characterization through NMR and Förster resonance energy transfer (FRET) studies demonstrated graveoline's ability to perturb KRAS membrane interaction in a biochemical setting. Our biophysical approach sheds light on the intricate molecular mechanisms underlying KRAS-ligand interactions, providing valuable insights into understanding the KRAS-associated pathophysiology. These findings contribute to the translational aspect of our study, offering potential avenues for further research targeting KRAS membrane association with the potential to lead to a new class of RAS therapeutics.

5.
Nat Commun ; 12(1): 1176, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608534

RESUMO

The first step of RAF activation involves binding to active RAS, resulting in the recruitment of RAF to the plasma membrane. To understand the molecular details of RAS-RAF interaction, we present crystal structures of wild-type and oncogenic mutants of KRAS complexed with the RAS-binding domain (RBD) and the membrane-interacting cysteine-rich domain (CRD) from the N-terminal regulatory region of RAF1. Our structures reveal that RBD and CRD interact with each other to form one structural entity in which both RBD and CRD interact extensively with KRAS. Mutations at the KRAS-CRD interface result in a significant reduction in RAF1 activation despite only a modest decrease in binding affinity. Combining our structures and published data, we provide a model of RAS-RAF complexation at the membrane, and molecular insights into RAS-RAF interaction during the process of RAS-mediated RAF activation.


Assuntos
Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Cisteína/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Chembiochem ; 11(3): 345-50, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20052708

RESUMO

The human epidermal growth factor receptors, EGFR and HER2, are members of the EGFR family of cell-surface receptors/tyrosine kinases. EGFR- and HER2-positive cancers represent a more aggressive disease with greater likelihood of recurrence, poorer prognosis, and decreased survival rate, compared to EGFR- or HER2-negative cancers. The details of HER2 proto-oncogenic functions are not deeply understood, partially because of a restricted availability of tools for EGFR and HER2 detection (A. Sorkin and L. K. Goh, Exp. Cell Res. 2009, 315, 683-696). We have created photostable and relatively simple-to-produce imaging probes for in vitro staining of EGFR and HER2. These new reagents, called affiprobes, consist of a targeting moiety, a HER2- or EGFR-specific Affibody molecule, and a fluorescent moiety, mCherry (red) or EGFP (green). Our flow cytometry and confocal microscopy experiments demonstrated high specificity and signal/background ratio of affiprobes. Affiprobes are able to stain both live cells and frozen tumor xenograph sections. This type of optical probe can easily be extended for targeting other cell-surface antigens/ receptors.


Assuntos
Receptores ErbB/análise , Proteínas Luminescentes/genética , Sondas Moleculares/química , Receptor ErbB-2/análise , Proteínas Recombinantes de Fusão/química , Animais , Benzimidazóis/química , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Citometria de Fluxo , Corantes Fluorescentes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia Confocal , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transplante Heterólogo , Proteína Vermelha Fluorescente
7.
ACS Omega ; 5(1): 832-842, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956834

RESUMO

The trafficking chaperone PDE6D (also referred to as PDEδ) has been nominated as a surrogate target for K-Ras4B (hereafter K-Ras). Arl2-assisted unloading of K-Ras from PDE6D in the perinuclear area is significant for correct K-Ras localization and therefore activity. However, the unloading mechanism also leads to the undesired ejection of PDE6D inhibitors. To counteract ejection, others have recently optimized inhibitors for picomolar affinities; however, cell penetration generally seems to remain an issue. To increase resilience against ejection, we engineered a "chemical spring" into prenyl-binding pocket inhibitors of PDE6D. Furthermore, cell penetration was improved by attaching a cell-penetration group, allowing us to arrive at micromolar in cellulo potencies in the first generation. Our model compounds, Deltaflexin-1 and -2, selectively disrupt K-Ras, but not H-Ras membrane organization. This selectivity profile is reflected in the antiproliferative activity on colorectal and breast cancer cells, as well as the ability to block stemness traits of lung and breast cancer cells. While our current model compounds still have a low in vitro potency, we expect that our modular and simple inhibitor redesign could significantly advance the development of pharmacologically more potent compounds against PDE6D and related targets, such as UNC119 in the future.

8.
Bioorg Med Chem Lett ; 19(10): 2693-8, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19362470

RESUMO

Blocking the interaction between phosphotyrosine (pTyr)-containing activated receptors and the Src homology 2 (SH2) domain of the growth factor receptor-bound protein 2 (Grb 2) is considered to be an effective and non-cytotoxic strategy to develop new anti-proliferate agents due to its potential to shut down the Ras activation pathway. In this study, a series of phosphotyrosine containing cyclic pentapeptides were designed and synthesized based upon the phage library derived cyclopeptide, G1TE. A comprehensive SAR study was also carried out to develop potent Grb2-SH2 domain antagonists based upon this novel template. With both the peptidomimetic optimization of the amino acid side-chains and the constraint of the backbone conformation guided by molecular modeling, we developed several potent antagonists with low micromolar range binding affinity, such as cyclic peptide 15 with an K(d)=0.359microM, which is providing a novel template for the development of Grb2-SH2 domain antagonists as potential therapeutics for certain cancers.


Assuntos
Proteína Adaptadora GRB2/metabolismo , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Simulação por Computador , Descoberta de Drogas , Proteína Adaptadora GRB2/antagonistas & inibidores , Biblioteca de Peptídeos , Peptídeos Cíclicos/síntese química , Ligação Proteica , Relação Estrutura-Atividade , Domínios de Homologia de src
9.
Sci Signal ; 11(550)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279169

RESUMO

The Ras-extracellular signal-regulated kinase pathway is critical for controlling cell proliferation, and its aberrant activation drives the growth of various cancers. Because many pathogens produce toxins that inhibit Ras activity, efforts to develop effective Ras inhibitors to treat cancer could be informed by studies of Ras inhibition by pathogens. Vibrio vulnificus causes fatal infections in a manner that depends on multifunctional autoprocessing repeats-in-toxin, a toxin that releases bacterial effector domains into host cells. One such domain is the Ras/Rap1-specific endopeptidase (RRSP), which site-specifically cleaves the Switch I domain of the small GTPases Ras and Rap1. We solved the crystal structure of RRSP and found that its backbone shares a structural fold with the EreA/ChaN-like superfamily of enzymes. Unlike other proteases in this family, RRSP is not a metalloprotease. Through nuclear magnetic resonance analysis and nucleotide exchange assays, we determined that the processing of KRAS by RRSP did not release any fragments or cause KRAS to dissociate from its bound nucleotide but instead only locally affected its structure. However, this structural alteration of KRAS was sufficient to disable guanine nucleotide exchange factor-mediated nucleotide exchange and prevent KRAS from binding to RAF. Thus, RRSP is a bacterial effector that represents a previously unrecognized class of protease that disconnects Ras from its signaling network while inducing limited structural disturbance in its target.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cristalografia por Raios X , Endopeptidases/química , Endopeptidases/genética , Células HeLa , Humanos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Conformação Proteica , Proteólise , Homologia de Sequência de Aminoácidos
10.
J Med Chem ; 50(8): 1978-82, 2007 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-17371004

RESUMO

A 4-aminopiperidine-4-carboxylic acid residue was placed in the pTyr+1 position of a Grb2 SH2 domain-binding peptide to form a general platform, which was then acylated with a variety of groups to yield a library of compounds designed to explore potential binding interactions, with protein features lying below the betaD strand. The highest affinities were obtained using phenylethyl carbamate and phenylbutyrylamide functionalities.


Assuntos
Proteína Adaptadora GRB2/química , Oligopeptídeos/química , Fosfotirosina/química , Piperidinas/síntese química , Domínios de Homologia de src , Acilação , Sítios de Ligação , Modelos Moleculares , Conformação Molecular , Piperidinas/química
11.
J Biomol Tech ; 18(4): 259-66, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17916799

RESUMO

The interaction of the HIV Gag polyprotein with nucleic acid is a critical step in the assembly of viral particles. The Gag polyprotein is composed of the matrix (MA), capsid (CA), and nucleocapsid (NC) domains. The NC domain is required for nucleic acid interactions, and the CA domain is required for Gag-Gag interactions. Previously, we have investigated the binding of the NC protein to d(TG)(n) oligonucleotides using surface plasmon resonance (SPR) spectroscopy. We found a single NC protein is able to bind to more than one immobilized oligonucleotide, provided that the oligonucleotides are close enough together. As NC is believed to be the nucleic acid binding domain of Gag, we might expect Gag to show the same complex behavior. We wished to analyze the stoichiometry of Gag binding to oligonucleotides without this complication due to tertiary complex formation. We have therefore analyzed Gag binding to extremely low oligonucleotide density on SPR chips. Such low densities of oligonucleotides are difficult to accurately quantitate. We have determined by Fourier transform ion cyclotron (FTICR) mass spectrometry that four molecules of NC bind to d(TG)(10) (a 20-base oligonucleotide). We developed a method of calibrating low-density surfaces using NC calibration injections. Knowing the maximal response and the stoichiometry of binding, we can precisely determine the amount of oligonucleotide immobilized at these very-low-density surfaces (<1 Response Unit). Using this approach, we have measured the binding of Gag to d(TG)(10). Gag binds to a 20-mer with a stoichiometry of greater than 4. This suggests that once Gag is bound to the immobilized oligonucleotide, additional Gag molecules can bind to this complex.


Assuntos
Produtos do Gene gag/metabolismo , HIV-1/metabolismo , Oligonucleotídeos/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Sequência de Bases , Primers do DNA , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
12.
J Med Chem ; 48(16): 5369-72, 2005 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16078854

RESUMO

A new phosphotyrosyl mimetic 4-(alpha-hydroxymalonyl)phenylalanine and its incorporation into a Grb2 SH2 domain-binding tripeptide are presented. In whole-cell studies using malonyl ethyl ester prodrug derivatives, it was observed that the 4-(alpha-hydroxymalonyl)phenylalanyl-containing peptide exhibited greater efficacy than the nonhydroxylated 4-(malonyl)phenylalanyl-containing congener in blocking the association of Grb2 with activated erbB-2 tyrosine kinase. These results are consistent with de-esterification and at least partial intracellular decarboxylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Malonatos/síntese química , Oligopeptídeos/síntese química , Fenilalanina/análogos & derivados , Fosfotirosina/química , Domínios de Homologia de src , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Linhagem Celular Tumoral , Desenho de Fármacos , Ésteres/síntese química , Ésteres/química , Ésteres/farmacologia , Proteína Adaptadora GRB2 , Humanos , Malonatos/química , Malonatos/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fenilalanina/síntese química , Fenilalanina/química , Fenilalanina/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
13.
J Med Chem ; 48(3): 764-72, 2005 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-15689160

RESUMO

Previous work has shown that incorporation of either 1-aminocyclohexanecarboxylic acid (Ac6c) or alpha-methyl-p-phosphonophenylalanine ((alpha-Me)Ppp) in the phosphotyrosyl (pTyr) C-proximal position (pY + 1 residue) of Grb2 SH2 domain binding peptides confers high affinity. The tetralin-based (S)-2-amino-6-phosphonotetralin-2-carboxylic acid (Atc(6-PO3H2)) simultaneously presents structural features of both (alpha-Me)Ppp and Ac6c residues. The current study compares the affinity of this tetralin hybrid Atc(6-PO3H2) versus Ac6c and (alpha-Me)Ppp residues when incorporated into the pY + 1 position of a high-affinity Grb2 SH2 domain binding tripeptide platform. The highest binding affinity (KD = 14.8 nM) was exhibited by the (alpha-Me)Ppp-containing parent, with the corresponding Ac6c-containing peptide being nearly 2-fold less potent (KD = 23.8 nM). The lower KD value was attributable primarily to a 50% increase in off-rate. Replacement of the Ac6c residue with the tetralin-based hybrid resulted in a further 4-fold decrease in binding affinity (KD = 97.8 nM), which was the result of a further 6-fold increase in off-rate, offset by an approximate 45% increase in on-rate. Therefore, by incorporation of the key structural components found in (alpha-Me)Ppp into the Ac6c residue, the tetralin hybrid does enhance binding on-rate. However, net binding affinity is decreased due to an associated increase in binding off-rate. Alternatively, global conformational constraint of an (alpha-Me)Ppp-containing peptide by beta-macrocyclization did result in pronounced elevation of binding affinity, which was achieved primarily through a decrease in the binding off-rate. Mathematical fitting using a simple model that assumed a single binding site yielded an effective KD of 2.28 nM. However this did not closely approximate the data obtained. Rather, use of a complex model that assumed two binding sites resulted in a very close fit of data and provided KD values of 97 pM and 72 nM for the separate sites, respectively. Therefore, although local conformational constraint in the pY + 1 residue proved to be deleterious, global conformational constraint through beta-macrocyclization achieved higher affinity. Similar beta-macrocyclization may potentially be extended to SH2 domain systems other than Grb2, where bend geometries are required.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Organofosfonatos/química , Fenilalanina/análogos & derivados , Fenilalanina/síntese química , Fosfopeptídeos/síntese química , Fosfotirosina/química , Domínios de Homologia de src , Sítios de Ligação , Ciclização , Proteína Adaptadora GRB2 , Modelos Moleculares , Conformação Molecular , Mimetismo Molecular , Fenilalanina/química , Fosfopeptídeos/química , Ligação Proteica , Estereoisomerismo , Relação Estrutura-Atividade , Tetra-Hidronaftalenos/química
14.
J Med Chem ; 48(12): 3945-8, 2005 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-15943469

RESUMO

Reported herein are the design, synthesis, and Grb2 SH2 domain-binding affinities of several phosphoryl-mimicking groups displayed within the context of a conformationally constrained macrocyclic platform. With use of surface plasmon resonance techniques, single-digit nanomolar affinities were exhibited by phosphonic acid and malonyl-containing diacidic phosphoryl mimetics (for 4h and 4g, K(D) = 1.47 and 3.62 nM, respectively). Analogues containing monoacidic phosphoryl mimetics provided affinities of K(D) = 16-67 nM. Neutral phosphoryl-mimicking groups did not show appreciable binding.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Compostos Macrocíclicos/síntese química , Organofosfatos/química , Domínios de Homologia de src , Sítios de Ligação , Ligação Competitiva , Ensaio de Imunoadsorção Enzimática , Proteína Adaptadora GRB2 , Compostos Macrocíclicos/química , Mimetismo Molecular , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
15.
Chem Biodivers ; 2(4): 447-56, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17191992

RESUMO

As typified by 2-{(9S,10S,14R,18S)-18-(2-amino-2-oxoethyl)-14-[(5-methyl-1H-indol-1-yl)methyl]-8,17,20-trioxo-10-[4-(phosphonomethyl)phenyl]-7,16,19-triazaspiro[5.14]icos-11-en-9-yl}acetic acid ((14R)-1b), ring-closing methathesis-derived macrocyclic tetrapeptide mimetics have recently been reported that bind with high affinity to Grb2 SH2 domains in both extracellular and whole-cell assays. The synthetic complexity of this class of agents limits further therapeutic development. Although a significant component of this synthetic complexity arises from the presence of three stereogenic centers, C(9) (S), C(10) (S), and C(14) (R), it is unclear whether stereoselective introduction of defined configuration at C(14) is required for high-affinity binding. Reported herein is a synthetic route to these macrocycles lacking stereoselectivity in the formation of the C(14) ring junction, which is four synthetic steps shorter than the original stereoselective synthesis. Separation of C(14)-epimers obtained by this approach was achieved by preparative HPLC. Molecular-dynamics studies of ligands bound to the Grb2 SH2 domain protein indicated that the (14R)-configuration should display more-favorable interactions with the protein relative to the (14S)-epimer. Indeed, although surface-plasmon-resonance-derived binding constants to Grb2 SH2 domain protein indicated that the affinity of the (14R)-epimer (KD = 4.8 nM) is greater than that of the (14S)-epimer (KD = 11 nM), it is only marginally so. Therefore, little affinity would be lost through a non-stereoselective synthesis of the C(14)-center. Further studies are in progress to explore reduced structural complexity at the C(14)-center.


Assuntos
Proteína Adaptadora GRB2/metabolismo , Compostos Macrocíclicos/síntese química , Domínios de Homologia de src , Proteína Adaptadora GRB2/química , Estrutura Molecular , Peptídeos , Estrutura Terciária de Proteína
16.
Sci Rep ; 5: 15916, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26522388

RESUMO

Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.


Assuntos
Lipídeos/fisiologia , Prenilação de Proteína/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Biofísica/métodos , Membrana Celular/metabolismo , Células Cultivadas , Guanosina Trifosfato/metabolismo , Humanos , Insetos/metabolismo , Metilação , Ligação Proteica/fisiologia , Quinases raf/metabolismo
17.
J Med Chem ; 56(1): 182-200, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23259865

RESUMO

Tyrosyl-DNA phosphodiesterase I (Tdp1) plays a key role in the repair of damaged DNA resulting from the topoisomerase I (Top1) inhibitor camptothecin and a variety of other DNA-damaging anticancer agents. This report documents the design, synthesis, and evaluation of new indenoisoquinolines that are dual inhibitors of both Tdp1 and Top1. Enzyme inhibitory data and cytotoxicity data from human cancer cell cultures were used to establish structure-activity relationships. The potencies of the indenoisoquinolines against Tdp1 ranged from 5 µM to 111 µM, which places the more active compounds among the most potent known inhibitors of this target. The cytotoxicity mean graph midpoints ranged from 0.02 to 2.34 µM. Dual Tdp1-Top1 inhibitors are of interest because the Top1 and Tdp1 inhibitory activities could theoretically work synergistically to create more effective anticancer agents.


Assuntos
Antineoplásicos/síntese química , DNA Topoisomerases Tipo I/metabolismo , Indenos/síntese química , Isoquinolinas/síntese química , Inibidores de Fosfodiesterase/síntese química , Diester Fosfórico Hidrolases/metabolismo , Inibidores da Topoisomerase I/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indenos/química , Indenos/farmacologia , Isoquinolinas/química , Isoquinolinas/farmacologia , Modelos Moleculares , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia
18.
J Med Chem ; 52(6): 1612-8, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19226165

RESUMO

A fluorescence anisotropy (FA) competition-based Shc Src homology 2 (SH2) domain-binding was established using the high affinity fluorescein isothiocyanate (FITC) containing peptide, FITC-NH-(CH2)4-CO-pY-Q-G-L-S-amide (8; Kd = 0.35 microM). Examination of a series of open-chain bis-alkenylamide containing peptides, prepared as ring-closing metathesis precursors, showed that the highest affinities were obtained by replacement of the original Gly residue with N alpha-substituted Gly (NSG) "peptoid" residues. This provided peptoid-peptide hybrids of the form "Ac-pY-Q-[NSG]-L-amide." Depending on the NSG substituent, certain of these hybrids exhibited up to 40-fold higher Shc SH2 domain-binding affinity than the parent Gly-containing peptide (IC50 = 248 microM) (for example, for N-homoallyl analogue 50, IC50 = 6 microM). To our knowledge, this work represents the first successful example of the application of peptoid-peptide hybrids in the design of SH2 domain-binding antagonists. These results could provide a foundation for further structural optimization of Shc SH2 domain-binding peptide mimetics.


Assuntos
Peptídeos/metabolismo , Peptoides/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Fluoresceína-5-Isotiocianato/química , Polarização de Fluorescência , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeos/química , Peptoides/química , Receptores Proteína Tirosina Quinases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
J Med Chem ; 51(23): 7459-68, 2008 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18989951

RESUMO

We have shown previously that a potent synthetic antagonist of growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain binding (1) blocks growth factor stimulated motility, invasion, and angiogenesis in cultured cell models, as well as tumor metastasis in animals. To characterize the selectivity of 1 for the SH2 domain of Grb2 over other proteins containing similar structural binding motifs, we synthesized a biotinylated derivative (3) that retained high affinity Grb2 SH2 domain binding and potent biological activity. To investigate the selectivity of 1 and 3 for Grb2, the biotinylated antagonist 3 was used to immobilize target proteins from cell extracts for subsequent identification by mass spectrometry. Non-specific binding was identified in parallel using a biotinylated analogue that lacked a single critical binding determinant. The mechanism of action of the antagonist was further characterized by immunoprecipitation, immunoblotting, and light microscopy. This approach to defining protein binding antagonist selectivity and molecular basis of action should be widely applicable in drug development.


Assuntos
Biotina/farmacologia , Proteína Adaptadora GRB2/antagonistas & inibidores , Domínios de Homologia de src/efeitos dos fármacos , Sítios de Ligação , Biotina/análogos & derivados , Biotina/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
20.
J Org Chem ; 72(25): 9635-42, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17990895

RESUMO

Ring-closing metathesis (RCM) was employed to join carboxy-terminal alkenyl glycine side chains together with vinyl- and allyl-functionality appended to the beta-methylene of amino-terminal phosphotyrosyl (pTyr) mimetics. This required the synthesis of a variety of new pTyr mimetics, including a novel aza-containing analogue. Many of the resulting 15-member macrocyclic tetrapeptide mimetics exhibited low nanomolar Grb2 SH2 domain-binding affinities in spite of the fact that differing ring junction stereochemistries and geometries of the RCM-derived double bond were employed. The finding that significant latitude exists in the structural requirements for ring closure may facilitate the development of therapeutically relevant macrocyle-based Grb2 SH2 domain-binding antagonists. The synthetic approaches used in this study may also find application to peptide mimetics directed at other biological targets.


Assuntos
Proteína Adaptadora GRB2/química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Oligopeptídeos/química , Oligopeptídeos/síntese química , Sítios de Ligação , Ciclização , Conformação Molecular , Mimetismo Molecular , Estereoisomerismo , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA