Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cogn Affect Behav Neurosci ; 22(2): 316-327, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34642896

RESUMO

People tend to automatically imitate others' facial expressions of emotion. That reaction, termed "facial mimicry" has been linked to sensorimotor simulation-a process in which the observer's brain recreates and mirrors the emotional experience of the other person, potentially enabling empathy and deep, motivated processing of social signals. However, the neural mechanisms that underlie sensorimotor simulation remain unclear. This study tests how interfering with facial mimicry by asking participants to hold a pen in their mouth influences the activity of the human mirror neuron system, indexed by the desynchronization of the EEG mu rhythm. This response arises from sensorimotor brain areas during observed and executed movements and has been linked with empathy. We recorded EEG during passive viewing of dynamic facial expressions of anger, fear, and happiness, as well as nonbiological moving objects. We examine mu desynchronization under conditions of free versus altered facial mimicry and show that desynchronization is present when adult participants can freely move but not when their facial movements are inhibited. Our findings highlight the importance of motor activity and facial expression in emotion communication. They also have important implications for behaviors that involve occupying or hiding the lower part of the face.


Assuntos
Emoções , Expressão Facial , Adulto , Emoções/fisiologia , Empatia , Face , Felicidade , Humanos
2.
J Vis ; 22(8): 18, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904797

RESUMO

Research in perception and attention has typically sought to evaluate cognitive mechanisms according to the average response to a manipulation. Recently, there has been a shift toward appreciating the value of individual differences and the insight gained by exploring the impacts of between-participant variation on human cognition. However, a recent study suggests that many robust, well-established cognitive control tasks suffer from surprisingly low levels of test-retest reliability (Hedge, Powell, & Sumner, 2018b). We tested a large sample of undergraduate students (n = 160) in two sessions (separated by 1-3 weeks) on four commonly used tasks in vision science. We implemented measures that spanned a range of perceptual and attentional processes, including motion coherence (MoCo), useful field of view (UFOV), multiple-object tracking (MOT), and visual working memory (VWM). Intraclass correlations ranged from good to poor, suggesting that some task measures are more suitable for assessing individual differences than others. VWM capacity (intraclass correlation coefficient [ICC] = 0.77), MoCo threshold (ICC = 0.60), UFOV middle accuracy (ICC = 0.60), and UFOV outer accuracy (ICC = 0.74) showed good-to-excellent reliability. Other measures, namely the maximum number of items tracked in MOT (ICC = 0.41) and UFOV number accuracy (ICC = 0.48), showed moderate reliability; the MOT threshold (ICC = 0.36) and UFOV inner accuracy (ICC = 0.30) showed poor reliability. In this paper, we present these results alongside a summary of reliabilities estimated previously for other vision science tasks. We then offer useful recommendations for evaluating test-retest reliability when considering a task for use in evaluating individual differences.


Assuntos
Atenção , Visão Ocular , Cognição/fisiologia , Humanos , Memória de Curto Prazo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA