RESUMO
The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.
RESUMO
Ammonia synthesis from N,N,O,O-supported manganese(V) nitrides and 9,10-dihydroacridine using proton-coupled electron transfer and visible light irradiation in the absence of precious metal photocatalysts is described. While the reactivity of the nitride correlated with increased absorption of blue light, excited-state lifetimes determined by transient absorption were on the order of picoseconds. This eliminated excited-state manganese nitrides as responsible for bimolecular N-H bond formation. Spectroscopic measurements on the hydrogen source, dihydroacridine, demonstrated that photooxidation of 9,10-dihydroacridine was necessary for productive ammonia synthesis. Transient absorption and pulse radiolysis data for dihydroacridine provided evidence for the presence of intermediates with weak E-H bonds, including the dihydroacridinium radical cation and both isomers of the monohydroacridine radical, but notably these intermediates were unreactive toward hydrogen atom transfer and net N-H bond formation. Additional optimization of the reaction conditions using higher photon flux resulted in higher rates of the ammonia production from the manganese(V) nitrides due to increased activation of the dihydroacridine.
RESUMO
OBJECTIVE: Micronutrient status, specifically vitamin D and iron, represent modifiable factors for optimizing military readiness. The primary purpose of this investigation was to determine associations between micronutrient deficiency (i.e., iron status and 25-hydroxy-vitamin D [25(OH)D]) and operationally relevant outcomes (i.e., skeletal health, musculoskeletal injury) at baseline and post-10 weeks of arduous military training. METHODS: A total of 227 (177 men, 50 women) Marine Officer Candidates School (OCS) candidates who completed OCS training with complete data sets were included in this analysis. Vitamin D and iron status indicators were collected at two timepoints, pre (baseline) and post OCS. Musculoskeletal outcomes at the mid- and proximal tibial diaphysis were assessed via peripheral quantitative computed tomography. RESULTS: Micronutrient status declined following OCS training in men and women and was associated with musculoskeletal outcomes including greater bone strength (strength strain index) at the mid-diaphysis site in those with optimal status (M = 38.26 mm3, SE = 15.59) versus those without (M = -8.03 mm3, SE = 17.27). In women (p = .037), endosteal circumference was greater in the deficient group (M = 53.26 mm, SE = 1.19) compared with the optimal group (M = 49.47 mm, SE = 1.31) at the proximal diaphysis. In men, greater baseline hepcidin concentrations were associated with an increased likelihood of suffering musculoskeletal injury during training. CONCLUSIONS: Vitamin D and iron status declined over the course of training, suggesting impaired micronutrient status. Differences in musculoskeletal outcomes by micronutrient group suggests optimal vitamin D and ferritin concentrations may exert beneficial effects on bone fatigability and fracture reduction during military training.
Assuntos
Micronutrientes , Militares , Vitamina D , Humanos , Masculino , Feminino , Vitamina D/sangue , Vitamina D/análogos & derivados , Micronutrientes/sangue , Adulto Jovem , Estado Nutricional , Ferro/sangue , Deficiência de Vitamina D , Adulto , Sistema Musculoesquelético/lesões , Densidade ÓsseaRESUMO
The objective is to examine the predictors of attrition in male and female candidates undergoing a 10-week early career military training program. 1006 candidates (79.5% male, 24.7 ± 3.2 years) consented to participating in a larger study examining predictors of injury during US Marine Corps Officer Candidates School (OCS). Participants completed a blood draw, demographic and psychological characteristics questionnaires, and two fitness tests. Participants were then grouped based on successful completion of OCS or not. Associations between potential predictors and attrition were analyzed using simple logistic regression analyses, followed by a backward stepwise elimination method. Area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to determine the accuracy of the attrition prediction model. 260 candidates (25.8%) attritted over the 10-week training, with the highest number of discharges during week 5. Musculoskeletal injury (MSKI) was the most common cause of attrition (30%), followed by non-MSKI medical (21.5%), and volitional withdrawals (19.6%). Sex, body mass index (BMI), resilience, initial physical fitness test score, combat fitness test (CFT) score, and prior military service were all significantly associated with attrition from OCS (all p < .05). The final prediction model of attrition included CFT score (p = .027) and resilience (p = .018). Multiple demographic, psychological, and fitness characteristics are associated with attrition from an early career military training course (OCS) and may be utilized as part of early screening procedures to identify and provide guidance for individuals at risk for not completing OCS.
RESUMO
For more than a decade, photoredox catalysis has been demonstrating that when photoactive catalysts are irradiated with visible light, reactions occur under milder, cheaper, and environmentally friendlier conditions. Furthermore, this methodology allows for the activation of abundant chemicals into valuable products through novel mechanisms that are otherwise inaccessible. The photoredox approach, however, has been primarily used for pharmaceutical applications, where its implementation has been highly effective, but typically with a more rudimentary understanding of the mechanisms involved in these transformations. From a global perspective, the manufacture of everyday chemicals by the chemical industry as a whole currently accounts for 10% of total global energy consumption and generates 7% of the world's greenhouse gases annually. In this context, the Bio-Inspired Light-Escalated Chemistry (BioLEC) Energy Frontier Research Center (EFRC) was founded to supercharge the photoredox approach for applications in chemical manufacturing aimed at reducing its energy consumption and emissions burden, by using bioinspired schemes to harvest multiple electrons to drive endothermically uphill chemical reactions. The Center comprises a diverse group of researchers with expertise that includes synthetic chemistry, biophysics, physical chemistry, and engineering. The team works together to gain a deeper understanding of the mechanistic details of photoredox reactions while amplifying the applications of these light-driven methodologies.In this Account, we review some of the major advances in understanding, approach, and applicability made possible by this collaborative Center. Combining sophisticated spectroscopic tools and photophysics tactics with enhanced photoredox reactions has led to the development of novel techniques and reactivities that greatly expand the field and its capabilities. The Account is intended to highlight how the interplay between disciplines can have a major impact and facilitate the advance of the field. For example, techniques such as time-resolved dielectric loss (TRDL) and pulse radiolysis are providing mechanistic insights not previously available. Hypothesis-driven photocatalyst design thus led to broadening of the scope of several existing transformations. Moreover, bioconjugation approaches and the implementation of triplet-triplet annihilation mechanisms created new avenues for the exploration of reactivities. Lastly, our multidisciplinary approach to tackling real-world problems has inspired the development of efficient methods for the depolymerization of lignin and artificial polymers.
Assuntos
Elétrons , Luz , Catálise , OxirreduçãoRESUMO
Political trust is an important predictor of compliance with government policies, especially in the face of natural disasters or public health emergencies. During the COVID-19 pandemic, for example, multiple studies related political trust to increased compliance with mobility restrictions. Yet these findings come mostly from high-income countries where political trust and wealth correlate positively. In Latin America, both variables correlate negatively, allowing for better testing of competing explanations. Using a difference-in-differences design, we find that in Latin America wealth and, counterintuitively, low political trust predict increased compliance. To understand mechanisms, we decompose political trust and wealth into underlying predictors (social protection, corruption, and education) and reinsert them into the model. While education, as a wealth proxy, predicts decreased mobility across all periods, social protection, which was the strongest predictor of political trust, relates significantly to increased mobility, but only at the beginning of the lockdown prior to distribution of emergency support. This suggests the existence of a public health moral hazard early in the pandemic, whereby citizens who benefited previously from government benefits may have been more risk tolerant in the face of the COVID-19 threat. We interpret these findings within the context of the region's recent "inclusionary turn." Future studies should explore the distinct relationships between political trust, risk perception, and compliance, especially in low- and middle-income countries, and their implications for policy responses to national emergencies.
RESUMO
This study aimed to validate a 7-sensor inertial measurement unit system against optical motion capture to estimate bilateral lower-limb kinematics. Hip, knee, and ankle sagittal plane peak angles and range of motion (ROM) were compared during bodyweight squats and countermovement jumps in 18 participants. In the bodyweight squats, left peak hip flexion (intraclass correlation coefficient [ICC] = .51), knee extension (ICC = .68) and ankle plantar flexion (ICC = .55), and hip (ICC = .63) and knee (ICC = .52) ROM had moderate agreement, and right knee ROM had good agreement (ICC = .77). Relatively higher agreement was observed in the countermovement jumps compared to the bodyweight squats, moderate to good agreement in right peak knee flexion (ICC = .73), and right (ICC = .75) and left (ICC = .83) knee ROM. Moderate agreement was observed for right ankle plantar flexion (ICC = .63) and ROM (ICC = .51). Moderate agreement (ICC > .50) was observed in all variables in the left limb except hip extension, knee flexion, and dorsiflexion. In general, there was poor agreement for peak flexion angles, and at least moderate agreement for joint ROM. Future work will aim to optimize methodologies to increase usability and confidence in data interpretation by minimizing variance in system-based differences and may also benefit from expanding planes of movement.
Assuntos
Tornozelo , Extremidade Inferior , Humanos , Fenômenos Biomecânicos , Articulação do Tornozelo , Articulação do Joelho , Postura , Amplitude de Movimento ArticularRESUMO
While heteroatom-centered radicals are understood to be highly electrophilic, their ability to serve as transient electron-withdrawing groups and facilitate polar reactions at distal sites has not been extensively developed. Here, we report a new strategy for the electronic activation of halophenols, wherein generation of a phenoxyl radical via formal homolysis of the aryl O-H bond enables direct nucleophilic aromatic substitution of the halide with carboxylate nucleophiles under mild conditions. Pulse radiolysis and transient absorption studies reveal that the neutral oxygen radical (Oâ¢) is indeed an extraordinarily strong electron-withdrawing group [σp-(Oâ¢) = 2.79 vs σp-(NO2) = 1.27]. Additional mechanistic and computational studies indicate that the key phenoxyl intermediate serves as an open-shell electron-withdrawing group in these reactions, lowering the barrier for nucleophilic substitution by more than 20 kcal/mol relative to the closed-shell phenol form of the substrate. By using radicals as transient activating groups, this homolysis-enabled electronic activation strategy provides a powerful platform to expand the scope of nucleophile-electrophile couplings and enable previously challenging transformations.
Assuntos
Eletrônica , Elétrons , Ácidos Carboxílicos , Fenol , Espécies Reativas de OxigênioRESUMO
The T61I mutation in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), a protein residing in the mitochondrial intermembrane space (IMS), causes an autosomal dominant form of Parkinson's disease (PD), but the underlying pathogenic mechanisms are not well understood. Here, we compared the subcellular localization and solubility of wild-type (WT) and T61I mutant CHCHD2 in human cells. We found that mitochondrial targeting of both WT and T61I CHCHD2 depended on the four cysteine residues in the C-terminal coiled-coil-helix-coiled-coil-helix (CHCH) domain but not on the N-terminal predicted mitochondrial targeting sequence. The T61I mutation did not interfere with mitochondrial targeting of the mutant protein but induced its precipitation in the IMS. Moreover, T61I CHCHD2 induced increased mitochondrial production of reactive oxygen species and apoptosis, which was prevented by treatment with anti-oxidants. Retention of T61I CHCHD2 in the cytosol through mutation of the cysteine residues in the CHCH domain prevented its precipitation as well as its apoptosis-inducing effect. Importantly, T61I CHCHD2 potently impaired the solubility of WT CHCHD2. In conclusion, our data show that the T61I mutation renders mutant CHCHD2 insoluble inside mitochondria, suggesting loss of function of the mutant protein. In addition, T61I CHCHD2 exerts a dominant-negative effect on the solubility of WT CHCHD2, explaining the dominant inheritance of this form of PD.
Assuntos
Proteínas de Ligação a DNA/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Doença de Parkinson/genética , Fatores de Transcrição/genética , Humanos , Mutação/genética , Doença de Parkinson/patologiaRESUMO
Phosphoglucomutase 1 (PGM1) encodes the metabolic enzyme that interconverts glucose-6-P and glucose-1-P. Mutations in PGM1 cause impairment in glycogen metabolism and glycosylation, the latter manifesting as a congenital disorder of glycosylation (CDG). This unique metabolic defect leads to abnormal N-glycan synthesis in the endoplasmic reticulum (ER) and the Golgi apparatus (GA). On the basis of the decreased galactosylation in glycan chains, galactose was administered to individuals with PGM1-CDG and was shown to markedly reverse most disease-related laboratory abnormalities. The disease and treatment mechanisms, however, have remained largely elusive. Here, we confirm the clinical benefit of galactose supplementation in PGM1-CDG-affected individuals and obtain significant insights into the functional and biochemical regulation of glycosylation. We report here that, by using tracer-based metabolomics, we found that galactose treatment of PGM1-CDG fibroblasts metabolically re-wires their sugar metabolism, and as such replenishes the depleted levels of galactose-1-P, as well as the levels of UDP-glucose and UDP-galactose, the nucleotide sugars that are required for ER- and GA-linked glycosylation, respectively. To this end, we further show that the galactose in UDP-galactose is incorporated into mature, de novo glycans. Our results also allude to the potential of monosaccharide therapy for several other CDG.
Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Fibroblastos/metabolismo , Galactose/administração & dosagem , Fosfoglucomutase/deficiência , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Glucose/metabolismo , Células Cultivadas , Estudos de Coortes , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Glicosilação , HumanosRESUMO
Philanthropy seeks to address deep-rooted social issues and assume responsibility for the creation of public goods not provided by the public sector-and in this way help reduce inequality. Yet philanthropy has also been criticized for bypassing democratic mechanisms for the public determination of how to invest in society-and thus may perpetuate other inequities. In both cases, inequality, defined as asymmetries of resources and power, plays a critical role in public goods creation and in the legitimacy of a country's philanthropic ecosystem. However, little empirical research examines the existence and role of inequality in country-level donation systems. To fill this gap, this study provides evidence of growing donation concentration in Chile's philanthropic ecosystem, with a focus on the culture sector, characterizes it by mapping systematic differences in ecosystem perceptions by actor type, and identifies and tests statistically structural and organizational factors associated with these perceptions. Inequality in Chile's donation system operates at multiple geographical, legal, and organizational levels, all of which are reflected in objective donation amounts and subjective ecosystem perceptions. We conclude that in Chile resource asymmetries and power imbalances hinder the fulfillment of philanthropy's promise and call for further research to identify policies that address inequities in emerging philanthropic ecosystems in Chile, Latin America, and beyond.
RESUMO
Here we report the use of pulse radiolysis and spectroelectrochemistry to generate low-valent nickel intermediates relevant to synthetically important Ni-catalyzed cross-coupling reactions and interrogate their reactivities toward comproportionation and oxidative addition processes. Pulse radiolysis provided a direct means to generate singly reduced [(dtbbpy)NiBr], enabling the identification of a rapid Ni(0)/Ni(II) comproportionation process taking place under synthetically relevant electrolysis conditions. This approach also permitted the direct measurement of Ni(I) oxidative addition rates with electronically differentiated aryl iodide electrophiles (kOA = 1.3 × 104-2.4 × 105 M-1 s-1), an elementary organometallic step often proposed in nickel-catalyzed cross-coupling reactions. Together, these results hold implications for a number of Ni-catalyzed cross-coupling processes.
RESUMO
Non-natural photoenzymatic reactions reported to date have depended on the excitation of electron donor-acceptor complexes formed between substrates and cofactors within protein active sites to facilitate electron transfer. While this mechanism has unlocked new reactivity, it limits the types of substrates that can be involved in this area of catalysis. Here we demonstrate that direct excitation of flavin hydroquinone within "ene"-reductase active sites enables new substrates to participate in photoenzymatic reactions. We found that by using photoexcitation these enzymes gain the ability to reduce acrylamides through a single electron transfer mechanism.
Assuntos
Flavinas/metabolismo , Oxirredutases/metabolismo , Processos Fotoquímicos , Catálise , Transporte de Elétrons , OxirreduçãoRESUMO
Cystic fibrosis (CF) is a life-threatening disorder characterised by decreased pulmonary mucociliary and pathogen clearance, and an exaggerated inflammatory response leading to progressive lung damage. CF is caused by bi-allelic pathogenic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel. CFTR is expressed in endothelial cells (ECs) and EC dysfunction has been reported in CF patients, but a role for this ion channel in ECs regarding CF disease progression is poorly described.We used an unbiased RNA sequencing approach in complementary models of CFTR silencing and blockade (by the CFTR inhibitor CFTRinh-172) in human ECs to characterise the changes upon CFTR impairment. Key findings were further validated in vitro and in vivo in CFTR-knockout mice and ex vivo in CF patient-derived ECs.Both models of CFTR impairment revealed that EC proliferation, migration and autophagy were downregulated. Remarkably though, defective CFTR function led to EC activation and a persisting pro-inflammatory state of the endothelium with increased leukocyte adhesion. Further validation in CFTR-knockout mice revealed enhanced leukocyte extravasation in lung and liver parenchyma associated with increased levels of EC activation markers. In addition, CF patient-derived ECs displayed increased EC activation markers and leukocyte adhesion, which was partially rescued by the CFTR modulators VX-770 and VX-809.Our integrated analysis thus suggests that ECs are no innocent bystanders in CF pathology, but rather may contribute to the exaggerated inflammatory phenotype, raising the question of whether normalisation of vascular inflammation might be a novel therapeutic strategy to ameliorate the disease severity of CF.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Endoteliais/metabolismo , Humanos , Fenótipo , TranscriptomaRESUMO
Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)-based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox-potential-driven. Remarkably, X-ray scattering shows that despite their large 2-nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film.
RESUMO
Pulse radiolysis (PR) enables the full redox window of a solvent to be accessed, as it does not require electrodes or electrolyte which limit the potentials accessible in voltammetry measurements. PR in chloroform has the additional possibility to enable reaching highly positive potentials because of its large ionization potential (IP). PR experiments demonstrated the formation of the (deuterated) chloroform radical cation CDCl3+Ë, identifying it as the source of the broad absorption in the visible part of the spectrum. Results indicated that solutes with a redox potential up to +3.7 V vs. Fc/Fc+ can be oxidized by CDCl3+Ë, which is far beyond what is possible with electrochemical techniques. Oxidation is not efficient because of rapid geminate recombination with chloride counterions, but also due to rapid decomposition of CDCl3+Ë which limits the yield of otherwise longer-lived free ions. The rapid, 6 ± 3 ns, decomposition, confirmed by two independent experiments, means that a solute must be present at a concentration >100 mM to capture >90% of the free holes formed. Addition of ethene removes the broad, overlapping absorptions from ubiquitous (chlorine atom, solute) complexes created by PR in halogenated solvents enabling clear observation of solute cations. The results also unravel the complex radiation chemistry of chloroform including the large reported value G(-CHCl3) = 12 molecules/100 eV for the decomposition of chloroform molecules.
RESUMO
A novel method to determine redox potentials without electrolyte is presented. The method is based on a new ability to determine the dissociation constant, K°d, for ion pairs formed between any radical anion and any inert electrolyte counterion. These dissociation constants can be used to determine relative shifts of redox potential as a function of electrolyte concentration, connecting referenced potentials determined with electrochemistry (with 0.1 M electrolyte) to electrolyte-free values. Pulse radiolysis created radical anions enabling determination of equilibrium constants for electron transfer between anions of donor and acceptor molecules as a function of electrolyte concentration in THF. The measurements determined "composite equilibrium constants", KeqC, which contain information about the dissociation constant for the electrolyte cations, X+, with the radical anions of both the donor, K°d(D-â¢,X+) and the acceptor, K°d(A-â¢,X+). Dissociation constants were obtained for a selection of radical anions with tetrabutylammonium (TBA+). The electrolyte was found to shift the reduction potentials of small molecules 1-methylpyrene and trans-stilbene by close to +130 mV whereas oligo-fluorenes and polyfluorenes experienced shifts of only (+25 ± 6) mV due to charge delocalization weakening the ion pair. These shifts for reduction of aromatic hydrocarbon molecules are smaller than shifts of +232 and +451 mV seen previously for benzophenone radical anion with TBA+ and Na+ respectively where the charge on the radical anion is localized largely on one CâO bond, thus forming a more tightly bound ion pair.
RESUMO
OBJECTIVE(S): To investigate differences in public stigma, self-stigma, attitudes (value and discomfort), and intentions to seek help between online and face-to-face counseling. To identify a difference in the relationship between these variables and both counseling modalities. METHOD: An online survey completed by 538 college students from one university in the Southeastern United States. The sample included 412 females and 126 males with a mean age of 20.21 years (standard deviation [SD] = 1.26). RESULTS: Significantly higher levels of self-stigma and discomfort toward online counseling were reported. Significantly higher value and intentions were reported toward face-to-face counseling. Self-stigma was positively related to public stigma, value was negatively related to self-stigma, and intentions toward seeking help was positively related to value. CONCLUSIONS: Results suggest face-to-face counseling is seen as a more favorable method of service delivery compared to online counseling. Value toward online counseling is an important predictor for seeking this type of help.
Assuntos
Atitude , Aconselhamento/métodos , Comportamento de Busca de Ajuda , Intenção , Intervenção Baseada em Internet/estatística & dados numéricos , Estigma Social , Estudantes/psicologia , Feminino , Humanos , Masculino , Sudeste dos Estados Unidos , Estudantes/estatística & dados numéricos , Inquéritos e Questionários , Universidades , Adulto JovemRESUMO
OBJECTIVE: Acute-on-chronic liver failure (ACLF) is associated with dysfunctional circulating monocytes whereby patients become highly susceptible to bacterial infections. Here, we identify the pathways underlying monocyte dysfunction in ACLF and we investigate whether metabolic rewiring reinstates their phagocytic and inflammatory capacity. DESIGN: Following phenotypic characterisation, we performed RNA sequencing on CD14+CD16- monocytes from patients with ACLF and decompensated alcoholic cirrhosis. Additionally, an in vitro model mimicking ACLF patient-derived features was implemented to investigate the efficacy of metabolic regulators on monocyte function. RESULTS: Monocytes from patients with ACLF featured elevated frequencies of interleukin (IL)-10-producing cells, reduced human leucocyte antigen DR isotype (HLA-DR) expression and impaired phagocytic and oxidative burst capacity. Transcriptional profiling of isolated CD14+CD16- monocytes in ACLF revealed upregulation of an array of immunosuppressive parameters and compromised antibacterial and antigen presentation machinery. In contrast, monocytes in decompensated cirrhosis showed intact capacity to respond to inflammatory triggers. Culturing healthy monocytes in ACLF plasma mimicked the immunosuppressive characteristics observed in patients, inducing a blunted phagocytic response and metabolic program associated with a tolerant state. Metabolic rewiring of the cells using a pharmacological inhibitor of glutamine synthetase, partially restored the phagocytic and inflammatory capacity of in vitro generated- as well as ACLF patient-derived monocytes. Highlighting its biological relevance, the glutamine synthetase/glutaminase ratio of ACLF patient-derived monocytes positively correlated with disease severity scores. CONCLUSION: In ACLF, monocytes feature a distinct transcriptional profile, polarised towards an immunotolerant state and altered metabolism. We demonstrated that metabolic rewiring of ACLF monocytes partially revives their function, opening up new options for therapeutic targeting in these patients.