Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Image Anal ; 77: 102361, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35168103

RESUMO

This article presents a systematic review of optical see-through head mounted display (OST-HMD) usage in augmented reality (AR) surgery applications from 2013 to 2020. Articles were categorised by: OST-HMD device, surgical speciality, surgical application context, visualisation content, experimental design and evaluation, accuracy and human factors of human-computer interaction. 91 articles fulfilled all inclusion criteria. Some clear trends emerge. The Microsoft HoloLens increasingly dominates the field, with orthopaedic surgery being the most popular application (28.6%). By far the most common surgical context is surgical guidance (n=58) and segmented preoperative models dominate visualisation (n=40). Experiments mainly involve phantoms (n=43) or system setup (n=21), with patient case studies ranking third (n=19), reflecting the comparative infancy of the field. Experiments cover issues from registration to perception with very different accuracy results. Human factors emerge as significant to OST-HMD utility. Some factors are addressed by the systems proposed, such as attention shift away from the surgical site and mental mapping of 2D images to 3D patient anatomy. Other persistent human factors remain or are caused by OST-HMD solutions, including ease of use, comfort and spatial perception issues. The significant upward trend in published articles is clear, but such devices are not yet established in the operating room and clinical studies showing benefit are lacking. A focused effort addressing technical registration and perceptual factors in the lab coupled with design that incorporates human factors considerations to solve clear clinical problems should ensure that the significant current research efforts will succeed.


Assuntos
Realidade Aumentada , Ortopedia , Óculos Inteligentes , Cirurgia Assistida por Computador , Humanos , Imagens de Fantasmas , Cirurgia Assistida por Computador/métodos
2.
J Imaging ; 9(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36662104

RESUMO

Obstetric ultrasound (US) training teaches the relationship between foetal anatomy and the viewed US slice to enable navigation to standardised anatomical planes (head, abdomen and femur) where diagnostic measurements are taken. This process is difficult to learn, and results in considerable inter-operator variability. We propose the CAL-Tutor system for US training based on a US scanner and phantom, where a model of both the baby and the US slice are displayed to the trainee in its physical location using the HoloLens 2. The intention is that AR guidance will shorten the learning curve for US trainees and improve spatial awareness. In addition to the AR guidance, we also record many data streams to assess user motion and the learning process. The HoloLens 2 provides eye gaze, head and hand position, ARToolkit and NDI Aurora tracking gives the US probe positions and an external camera records the overall scene. These data can provide a rich source for further analysis, such as distinguishing expert from novice motion. We have demonstrated the system in a sample of engineers. Feedback suggests that the system helps novice users navigate the US probe to the standard plane. The data capture is successful and initial data visualisations show that meaningful information about user behaviour can be captured. Initial feedback is encouraging and shows improved user assessment where AR guidance is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA