Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Biomech ; 37(6): 565-572, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34689126

RESUMO

A biomechanical model has been developed to assess the effects of a voluntary effort of quadriceps-hamstring cocontraction on tibiofemoral force during isometric knee flexion and knee extension exercises with constant external resistance. The model establishes the analytic condition in the moment arms and traction angles of the quadriceps and hamstring muscles that determines the direction (anterior/posterior) of the tibiofemoral shear force developed by the cocontraction. This model also establishes the mechanical effect (loading/unloading) on the anterior cruciate ligament (ACL). At about 15° of knee flexion (where the ACL experiences its maximum quadriceps-induced strain) a voluntary quadriceps-hamstring cocontraction effort yields: (1) nearly the same enhancement in hamstring and quadriceps activation, (2) an increase in hamstring force about 1.5 times higher than that of the quadriceps, and (3) posterior (ACL unloading) tibial pull and compressive tibiofemoral force that increase linearly with the level of quadriceps and hamstring activation. The sensitivity of the results to intersubject variability in the posterior slope of the tibial plateau and muscle moment arms has been estimated with the use of anatomic data available in the literature. An anterior (ACL loading) tibial pull is actually developed at 15° of knee flexion by a voluntary effort of quadriceps-hamstring cocontraction as the posterior tibial slope exceeds 14°.


Assuntos
Músculos Isquiossurais , Ligamento Cruzado Anterior/fisiologia , Fenômenos Biomecânicos , Humanos , Joelho/fisiologia , Articulação do Joelho/fisiologia , Músculo Esquelético/fisiologia
2.
Eur J Appl Physiol ; 120(4): 811-828, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32062702

RESUMO

PURPOSE: Perceptual and goal-directed behaviors may be improved by repetitive sensory stimulations without practice-based training. Focal muscle vibration (f-MV) modulating the spatiotemporal properties of proprioceptive inflow is well-suited to investigate the effectiveness of sensory stimulation in influencing motor outcomes. Thus, in this study, we verified whether optimized f-MV stimulation patterns might affect motor control of upper limb movements. METHODS: To answer this question, we vibrated the slightly tonically contracted anterior deltoid (AD), posterior deltoid (PD), and pectoralis major muscles in different combinations in forty healthy subjects at a frequency of 100 Hz for 10 min in single or repetitive administrations. We evaluated the vibration effect immediately after f-MV application on upper limb targeted movements tasks, and one week later. We assessed target accuracy, movement mean and peak speed, and normalized Jerk using a 3D optoelectronic motion capture system. Besides, we evaluated AD and PD activity during the tasks using wireless electromyography. RESULTS: We found that f-MV may induce increases (p < 0.05) in movement accuracy, mean speed and smoothness, and changes (p < 0.05) in the electromyographic activity. The main effects of f-MV occurred overtime after repetitive vibration of the AD and PD muscles. CONCLUSION: Thus, in healthy subjects, optimized f-MV stimulation patterns might over time affect the motor control of the upper limb movement. This finding implies that f-MV may improve the individual's ability to produce expected motor outcomes and suggests that it may be used to boost motor skills and learning during training and to support functional recovery in rehabilitation.


Assuntos
Destreza Motora/fisiologia , Propriocepção , Adulto , Eletromiografia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Recuperação de Função Fisiológica , Vibração , Adulto Jovem
3.
Int J Mol Sci ; 21(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392845

RESUMO

The estrogen estradiol is a potent neuroactive steroid that may regulate brain structure and function. Although the effects of estradiol have been historically associated with gonadal secretion, the discovery that this steroid may be synthesized within the brain has expanded this traditional concept. Indeed, it is accepted that de novo synthesized estradiol in the nervous system (nE2) may modulate several aspects of neuronal physiology, including synaptic transmission and plasticity, thereby influencing a variety of behaviors. These modulations may be on a time scale of minutes via non-classical and often membrane-initiated mechanisms or hours and days by classical actions on gene transcription. Besides the high level, recent investigations in the cerebellum indicate that even a low aromatase expression can be related to the fast nE2 effect on brain functioning. These pieces of evidence point to the importance of an on-demand and localized nE2 synthesis to rapidly contribute to regulating the synaptic transmission. This review is geared at exploring a new scenario for the impact of estradiol on brain processes as it emerges from the nE2 action on cerebellar neurotransmission and cerebellum-dependent learning.


Assuntos
Cerebelo/fisiologia , Estradiol/metabolismo , Aprendizagem/fisiologia , Animais , Aromatase/genética , Humanos , Plasticidade Neuronal , Transmissão Sináptica , Transcrição Gênica
4.
J Sport Rehabil ; 28(3): 219-228, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364045

RESUMO

CONTEXT: Isolated infraspinatus atrophy (IIA) is a common condition among overhead activity athletes, which affects the hitting shoulder and is caused by suprascapular nerve injury. The loss of infraspinatus function could lead to altered activity of the glenohumeral and scapulothoracic (ST) muscles and compromise the optimal shoulder function. OBJECTIVE: To assess the surface electromyographic (sEMG) activity patterns, relationships, and response latencies of relevant shoulder girdle muscles in professional volleyball players with IIA and in healthy control players. DESIGN: Cross-sectional study. SETTING: Research laboratory. PATIENTS OR OTHER PARTICIPANTS: Twenty-four male professional volleyball players (12 players with diagnosed IIA and 12 healthy players) recruited from local volleyball teams. INTERVENTION(S): sEMG activity of anterior, middle, and posterior deltoid; upper, middle, and lower trapezius; and serratus anterior (SA) was recorded and evaluated during a movement of shoulder abduction in the scapular plane, monitored with an optoelectronic motion capture system. MAIN OUTCOME MEASURE(S): sEMG activity, relationships, and response latencies of the selected muscles were analyzed with analysis of variance models to highlight statistical differences within and between groups. RESULTS: Athletes with IIA demonstrated significant higher deltoid and trapezius muscles activity and lower SA activity compared with the contralateral shoulder and healthy athletes. The shoulder with IIA also showed a higher activity ratio between the upper trapezius and other ST muscles in addition to anticipated activation of the upper trapezius and delayed activation of the SA, with regard to the onset of shoulder movement. CONCLUSIONS: This study highlighted altered shoulder muscle activity levels, ST muscles imbalances, and abnormal ST recruitment patterns in the hitting shoulder of professional volleyball players with IIA, secondary to suprascapular nerve neuropathy. Such shoulder girdle muscles' impairments may compromise the optimal scapulohumeral rhythm and function, increasing the risk of acute and overuse shoulder injuries.


Assuntos
Traumatismos em Atletas/fisiopatologia , Músculo Deltoide/fisiopatologia , Atrofia Muscular , Lesões do Ombro/fisiopatologia , Músculos Superficiais do Dorso/fisiopatologia , Adulto , Atletas , Estudos Transversais , Eletromiografia , Humanos , Masculino , Síndromes de Compressão Nervosa/fisiopatologia , Escápula , Voleibol , Adulto Jovem
5.
J Sport Rehabil ; 28(6): 623-634, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222492

RESUMO

CONTEXT: Previous studies highlighted that exercises executed on unstable surfaces can yield important benefits to the function of the core musculature in rehabilitation settings, general conditioning settings, and athletic training when properly introduced within a periodized training schedule. No previous study has analyzed core-stability exercises executed in lying, quadruped, plank, and bridge positions on a whole-body wobble board (WWB) specifically designed to accommodate the exerciser's entire body and promote whole-body instability. We have designed a WWB allowed to roll in a plane perpendicular to its longitudinal axis to promote proactive and reactive activation of the core muscles with a transverse or diagonal line of action, which provides trunk and pelvic stability with low spine compression forces. PURPOSE: To determine the effect of the use of this newly designed WWB by assessing differences in core-muscle activity during core-stability exercises performed on the ground, in a stable condition, and on the WWB. DESIGN: Controlled laboratory study. SETTING: Research laboratory. PATIENTS OR OTHER PARTICIPANTS: Eighteen participants recruited from fitness centers. INTERVENTION(S): The electromyographic (EMG) activity of lumbopelvic and scapular muscles has been recorded during core-stability exercises executed on the WWB (unstable condition) and on ground (stable condition). MAIN OUTCOME MEASURE(S): Mean and peak EMG activity were compared between stable and unstable condition with paired t tests or Wilcoxon signed-rank tests. RESULTS: Overall, exercises performed on the WWB yielded significantly higher EMG activity in the serratus anterior and anterolateral abdominal muscles compared with the same exercises executed on the ground. Conversely, for the bird dog exercise, lower-back muscle activity was significantly higher on the ground. CONCLUSIONS: Compared with the ground, core-stability exercises executed on WWB constitute a simple and effective strategy to increase the activity level of the core muscles that control transverse-plane lumbopelvic and trunk stability, avoiding the use of external overload.


Assuntos
Músculos Abdominais/fisiologia , Músculos do Dorso/fisiologia , Exercício Físico , Equilíbrio Postural , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Equipamentos Esportivos , Adulto Jovem
6.
Neurobiol Learn Mem ; 155: 276-286, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125696

RESUMO

Neurosteroid 17 beta-estradiol (E2) is a steroid synthesized de novo in the nervous system that might influence neuronal activity and behavior. Nevertheless, the impact of E2 on the functioning of those neural systems in which it is slightly synthesized is less questioned. The vestibulo-ocular reflex (VOR) adaptation, may provide an ideal arena for investigating this issue. Indeed, E2 modulates cerebellar parallel fiber-Purkinje cell synaptic plasticity that underlies encoding of VOR adaptation. Moreover, aromatase expression in the cerebellum of adult rodents is maintained at very low levels and localized to Purkinje cells. The significance of age-related maintenance of low levels of aromatase expression in the cerebellum on behavior, however, has yet to be explored. Our aim in this study was to determine whether E2 synthesis exerts an effective and persistent modulation of VOR adaptation in adult male rats. To answer this question, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in VOR adaptation using an oral dose (2.5 mg/kg) of the aromatase inhibitor Letrozole in peri-pubertal and post-pubertal male rats. We found that Letrozole acutely impaired gain increases and decreases in VOR adaptation without altering basal ocular-motor performance and that these effects were similar in peri-pubertal and post-pubertal rats. Thus, in adult male rats neurosteroid E2 effectively modulates VOR adaptation in both of the periods studied. These findings imply that the adult cerebellum uses E2 synthesis for modulating motor memory formation and suggest that low and extremely localized E2 production may play a role in adaptive phenomena.


Assuntos
Adaptação Fisiológica , Cerebelo/fisiologia , Estradiol/biossíntese , Estradiol/fisiologia , Memória/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Animais , Inibidores da Aromatase/administração & dosagem , Letrozol/administração & dosagem , Masculino , Ratos Wistar
7.
J Sport Rehabil ; 27(4): 371-379, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605232

RESUMO

CONTEXT: Isolated infraspinatus muscle atrophy (IIMA) affects only the hitting shoulder of overhead-activity athletes and is caused by suprascapular nerve neuropathy. No study has assessed the static and dynamic stability of the shoulder in overhead professional athletes with IIMA to reveal possible shoulder sensorimotor alterations. OBJECTIVE: To assess the shoulder static stability, dynamic stability, and strength in professional volleyball players with IIMA and in healthy control players. DESIGN: Cross-sectional study. SETTING: Research lab. PATIENTS OR OTHER PARTICIPANTS: A total of 24 male professional volleyball players (12 players with diagnosed IIMA and 12 healthy players) recruited from local volleyball teams. INTERVENTION(S): Static stability was evaluated with 2 independent force platforms, and dynamic stability was assessed with the "Upper Quarter Y Balance Test." MAIN OUTCOME MEASURE(S): The static stability assessment was conducted in different support (single hand and both hands) and vision (open and closed eyes) conditions. Data from each test were analyzed with analysis of variance and paired t-test models to highlight statistical differences within and between groups. RESULTS: In addition to reduced abduction and external rotation strength, athletes with IIMA consistently demonstrated significant less static (P < .001) and dynamic stability (P < .001), compared with the contralateral shoulder and with healthy athletes. Closed eyes condition significantly enhanced the static stability deficit of the shoulder with IIMA (P = .04 and P = .03 for both hand and single hand support, respectively) but had no effect on healthy contralateral and healthy players' shoulders. CONCLUSIONS: This study highlights an impairment of the sensorimotor control system of the shoulder with IIMA, which likely results from both proprioceptive and strength deficits. This condition could yield subtle alteration in the functional use of the shoulder and predispose it to acute or overuse injuries. The results of this study may help athletic trainers and physical/physiotherapists to prevent shoulder injuries and create to specific proprioceptive and neuromuscular training programs.


Assuntos
Atrofia Muscular/fisiopatologia , Propriocepção , Manguito Rotador/fisiopatologia , Ombro/fisiopatologia , Voleibol , Adulto , Atletas , Estudos de Casos e Controles , Estudos Transversais , Humanos , Masculino , Força Muscular , Rotação , Adulto Jovem
8.
Ergonomics ; 59(5): 665-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26226165

RESUMO

We assessed whether the use of an ergonomic thorax stabilisation pad, during the preacher arm curl exercise, could significantly reduce the excessive shoulder protraction and thoracic kyphosis induced by the standard flat pad built into the existing preacher arm curl equipment. A 3D motion capture system and inclinometers were used to measure shoulder protraction and thoracic kyphosis in 15 subjects performing preacher arm curl with a plate-loaded machine provided with the standard flat pad. The same measures were repeated after replacing the flat pad with a new ergonomic pad, specifically designed to accommodate the thorax profile and improve body posture. Pad replacement significantly (p < 0.001) reduced shoulder protraction (from [Formula: see text] to [Formula: see text]) and thoracic kyphosis (from [Formula: see text] to [Formula: see text]), enabling postural and functional improvements within the entire spine, shoulder girdle and rib cage. The ergonomic pad may potentially allow a more effective training, prevent musculoskeletal discomfort and reduce the risk of injury. Practitioner summary: We have designed an ergonomic thorax stabilisation pad for the preacher arm curl exercise. The new ergonomic pad improves the poor posture conditions induced by the standard flat pad and may potentially allow a more effective training, prevent musculoskeletal discomfort, improve the breathing function and reduce the risk of injury.


Assuntos
Postura , Treinamento Resistido/instrumentação , Vértebras Torácicas , Tórax , Adulto , Fenômenos Biomecânicos , Desenho de Equipamento , Ergonomia , Exercício Físico , Humanos , Masculino , Ombro , Coluna Vertebral , Adulto Jovem
9.
Front Public Health ; 12: 1372660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919915

RESUMO

Introduction: Mindful movement is a comprehensive approach that integrates various bodily, emotional and cognitive aspects into physical activity, promoting overall well-being. This study assessed the impact of a mindful movement program, known as Movimento Biologico (MB), on participants psychological well-being (PWB), positive mental health (PMH), sense of coherence (SOC), and interoceptive awareness. Methods: MB program was conducted for students attending the bachelor's degree in Kinesiology and Sport Sciences of University of Perugia over 8 weeks (from October 16 to November 27, 2022). Participants were requested to fill in four questionnaires before and after the MB program: (1) 18-item PWB scale; (2) 9-item PMH scale; (3) 13-item SOC scale; (4) 32-item scale for Multidimensional Assessment of Interoceptive Awareness (MAIA). Wilcoxon signed-rank tests were used to assess changes, with significance set at p < 0.05. Results: Thirty-eight students (mean age 21.2, 60.5% male) participated. Several MAIA subscales, including noticing (p = 0.003), attention management (p = 0.002), emotional awareness (p = 0.007), self-regulation (p < 0.001), body listening (p = 0.001), and trusting (p = 0.001), showed significant improvements. PMH increased significantly (p = 0.015), and there was a significant enhancement in the autonomy subscale of PWB (p = 0.036). SOC and overall PWB also improved, though not significantly. Conclusion: The MB program significantly improved participants' positive mental health and interoceptive awareness. This likely resulted from better recognition and management of positive physiological sensations, a stronger link between physical sensations and emotions, enhanced confidence in one's body, and increased autonomy.


Assuntos
Promoção da Saúde , Atenção Plena , Estudantes , Humanos , Masculino , Feminino , Adulto Jovem , Promoção da Saúde/métodos , Inquéritos e Questionários , Estudantes/psicologia , Exercício Físico/psicologia , Saúde Mental , Conscientização , Adulto
10.
Eur J Appl Physiol ; 113(9): 2263-73, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23670482

RESUMO

A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle [Formula: see text], angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for [Formula: see text]. In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for [Formula: see text], and the greatest increasing gradient of tibiofemoral compressive force for [Formula: see text]. However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for [Formula: see text]. The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.


Assuntos
Ligamento Cruzado Anterior/fisiologia , Exercício Físico/fisiologia , Fêmur/fisiologia , Articulação do Joelho/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Tíbia/fisiologia , Fenômenos Biomecânicos , Humanos , Joelho/fisiologia , Perna (Membro)/fisiologia , Contração Muscular/fisiologia , Estresse Mecânico
11.
J Appl Biomech ; 29(1): 85-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23343708

RESUMO

We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.


Assuntos
Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Modelos Biológicos , Esforço Físico/fisiologia , Postura/fisiologia , Treinamento Resistido/instrumentação , Levantamento de Peso/fisiologia , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Estresse Mecânico , Análise e Desempenho de Tarefas , Torque
12.
Bioengineering (Basel) ; 10(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36829734

RESUMO

This study provides a dynamic model for a two-link musculoskeletal chain controlled by single-joint and two-joint muscles. The chain endpoint force, and the axial and shear components of the joint reaction forces, were expressed analytically as a function of the muscle forces or torques, the chain configuration, and the link angular velocities and accelerations. The model was applied to upper-limb ballistic push movements involving transverse plane shoulder flexion and elbow extension. The numerical simulation highlights that the shoulder flexion and elbow extension angular acceleration at the initial phase of the movement, and the elbow extension angular velocity and acceleration at the later phase of the movement, induce a proportional medial deviation in the endpoint force direction. The forearm angular velocity and acceleration selectively affect the value of the axial and shear components of the shoulder reaction force, depending on the chain configuration. The same goes for the upper arm and elbow. The combined contribution of the elbow extension angular velocity and acceleration may give rise to anterior shear force acting on the humerus and axial forearm traction force as high as 300 N. This information can help optimize the performance and estimate/control of the joint loads in ballistic sport activities and power-oriented resistance exercises.

13.
Sports (Basel) ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37368569

RESUMO

(1) Background: The "bird dog" exercise is considered one of the most effective therapeutic exercises for lumbopelvic rehabilitation and the prevention and treatment of low back pain. The "standing bird dog" (SBD) exercise, executed in a single-leg stance, constitutes a natural and challenging variation in the "bird dog"; nevertheless, this exercise has not yet been investigated. This study provides a stabilometric and electromyographic analysis of the SBD performed in static and dynamic conditions and in ipsilateral and contralateral variations; (2) Methods: A time-synchronized motion capture system, wireless electromyography sensors, and triaxial force platform were used to analyze the selected SBD exercises; (3) Results: In dynamic conditions, the gluteus maximum, multifidus, lumbar erector spinae, and gluteus medius reached a mean activation level higher than in the static condition, with peak activation levels of 80%, 60%, 55%, and a 45% maximum voluntary isometric contraction, respectively. In the static condition, balance control was more challenging in the mediolateral compared to the anteroposterior direction. In the dynamic condition, the balance challenge was higher in the anteroposterior direction and higher than the static condition in both directions; (4) Conclusions: The SBD was proved to be effective for strengthening the hip and lumbar extensor muscles and provided a powerful challenge to single-leg balance control in both mediolateral and anteroposterior directions.

14.
J Appl Biomech ; 28(3): 229-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22890424

RESUMO

The author derived the exact analytical expression of the instantaneous joint power in exercises with single-joint, variable-resistance, selectorized strength-training equipment, taking into account all the relevant geometric, kinematic, and dynamic variables of both the movable equipment elements (resistance input lever, cam-pulley system, weight stack) and of the user's exercising limb. A numerical algorithm was also designed to express, in the presence of a cam, the rectilinear kinematic variables of the weight stack as a function of the rotational kinematic variables of the resistance input lever, and vice versa. Given that information, one can measure the value of the instantaneous and mean joint power exclusively by means of a linear encoder placed on the weight stack or, alternatively, only by the use of an angular encoder placed on the rotational axis of the resistance lever. The results highlight that, for knee extension exercises with leg extension equipment, the real values of both instantaneous and mean joint power may differ by more than 50% in comparison with the values obtained by taking into account only the mass and velocity of the weight stack. These differences are notable not only in explosive exercises, but also whenever considerable joint velocities/accelerations occur within the range of motion.


Assuntos
Transferência de Energia/fisiologia , Articulação do Joelho/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido/instrumentação , Treinamento Resistido/métodos , Adulto , Simulação por Computador , Desenho de Equipamento , Humanos , Masculino , Movimento/fisiologia , Amplitude de Movimento Articular
15.
J Comp Neurol ; 530(11): 2014-2032, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35312040

RESUMO

Cerebellar-dependent learning is essential for the adaptation of motor and no motor behaviors to changing contexts, and neuroactive steroids-mainly referred to as estrogens-may regulate this process. However, the role of androgens in this process has not been established, although they may affect cerebellar physiology. Thus, this study aims to determine whether the activation of androgenic neural pathways may take part in controlling the vestibuloocular (VOR) and optokinetic reflexes (OKR), which depend on a defined cerebellar circuitry. To answer this question, we acutely blocked the activation of androgen receptors (Ars) using systemic administration of the Ars antagonist flutamide (FLUT; 20 mg/Kg) in peripubertal male rats. Then, we evaluated the FLUT effect on general oculomotor performance in the VOR and OKR as well as VOR adaptive gain increases and decreases. We used a paradigm causing fast VOR adaptation that combined in phase/out phase visuo-vestibular stimulations. We found that FLUT impaired the gain increase and decrease in VOR adaptation. However, FLUT altered neither acute nor overtime basal ocular-motor performance in the VOR or OKR. These findings indicate that the activation of androgenic neural pathways participates in phenomena leading to fast VOR adaptation, probably through the modulation of plasticity mechanisms that underlie adaptation of this reflex. Conversely, androgens may not be essential for neural information processing demands in basal ocular-motor reflexes. Moreover, our results suggest that androgens, possibly testosterone and dihydrotestosterone, could rapidly regulate motor memory encoding in the VOR adaptation, acting at both cerebellar and extracerebellar plasticity sites.


Assuntos
Androgênios , Reflexo Vestíbulo-Ocular , Adaptação Fisiológica/fisiologia , Androgênios/farmacologia , Animais , Cerebelo/fisiologia , Estrogênios , Masculino , Ratos , Reflexo Vestíbulo-Ocular/fisiologia
16.
Am J Physiol Cell Physiol ; 300(6): C1314-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21307345

RESUMO

Episodic ataxia type 1 (EA1) is an autosomal dominant disorder characterized by continuous myokymia and episodic attacks of ataxia. Mutations in the gene KCNA1 that encodes the voltage-gated potassium channel Kv1.1 are responsible for EA1. In several brain areas, Kv1.1 coassembles with Kv1.4, which confers N-type inactivating properties to heteromeric channels. It is therefore likely that the rate of inactivation will be determined by the number of Kv1.4 inactivation particles, as set by the precise subunit stoichiometry. We propose that EA1 mutations affect the rate of N-type inactivation either by reduced subunit surface expression, giving rise to a reduced number of Kv1.1 subunits in heterotetramer Kv1.1-Kv1.4 channels, or by reduced affinity for the Kv1.4 inactivation domain. To test this hypothesis, quantified amounts of mRNA for Kv1.4 or Kv1.1 containing selected EA1 mutations either in the inner vestibule of Kv1.1 on S6 or in the transmembrane regions were injected into Xenopus laevis oocytes and the relative rates of inactivation and stoichiometry were determined. The S6 mutations, V404I and V408A, which had normal surface expression, reduced the rate of inactivation by a decreased affinity for the inactivation domain while the mutations I177N in S1 and E325D in S5, which had reduced subunit surface expression, increased the rate of N-type inactivation due to a stoichiometric increase in the number of Kv1.4 subunits.


Assuntos
Ataxia/genética , Ataxia/metabolismo , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.4/metabolismo , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Animais , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.4/química , Canal de Potássio Kv1.4/genética , Modelos Moleculares , Oócitos/fisiologia , Técnicas de Patch-Clamp , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Ratos , Xenopus laevis
17.
J Sports Sci ; 29(5): 457-69, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21225486

RESUMO

An analytical biomechanical model was developed to establish the relevant properties of the Smith squat exercise, and the main differences from the free barbell squat. The Smith squat may be largely patterned to modulate the distributions of muscle activities and joint loadings. For a given value of the included knee angle (θ(knee)), bending the trunk forward, moving the feet forward in front of the knees, and displacing the weight distribution towards the forefoot emphasizes hip and lumbosacral torques, while also reducing knee torque and compressive tibiofemoral and patellofemoral forces (and vice versa). The tibiofemoral shear force φ(t) displays more complex trends that strongly depend on θ(knee). Notably, for 180° ≥ θ(knee) ≥ 130°, φ(t) and cruciate ligament strain forces can be suppressed by selecting proper pairs of ankle and hip angles. Loading of the posterior cruciate ligament increases (decreases) in the range 180° ≥ θ(knee) ≥ 150° (θ(knee) ≤ 130°) with knee extension, bending the trunk forward, and moving the feet forward in front of the knees. In the range 150° > θ(knee) > 130°, the behaviour changes depending on the foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are explained. This work enables careful use of the Smith squat in strengthening and rehabilitation programmes.


Assuntos
Exercício Físico , Articulação do Joelho , Equipamentos Esportivos , Estresse Mecânico , Torque , Levantamento de Peso , Suporte de Carga , Ligamento Cruzado Anterior , Humanos , Joelho , Extremidade Inferior , Modelos Biológicos , Ligamento Cruzado Posterior , Postura
18.
J Appl Biomech ; 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21975575

RESUMO

We derived the exact analytical expression of the instantaneous joint power in exercises with single-joint, variable-resistance, selectorized strength-training equipment, taking into account all the relevant geometric, kinematic and dynamic variables of both the movable equipment elements (resistance input lever, cam-pulley system, weight stack) and of the user's exercising limb. A numerical algorithm was also designed to express, in the presence of a cam, the rectilinear kinematic variables of the weight stack as a function of the rotational kinematic variables of the resistance input lever, and vice versa. Given that information, one can measure the value of the instantaneous and mean joint power exclusively by means of a linear encoder placed on the weight stack or, alternatively, only by the use of an angular encoder placed on the rotational axis of the resistance lever. The results highlight that, for knee extension exercises with leg extension equipment, the real values of both instantaneous and mean joint power may differ by more than 50% in comparison with the values obtained by taking into account only the mass and velocity of the weight stack. These differences are notable not only in explosive exercises, but whenever considerable joint velocities/accelerations occur within the range of motion.

19.
Biomimetics (Basel) ; 6(1)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579031

RESUMO

The values of a physiological parameter and its time derivatives, detected at different times by different sensory receptors, are processed by the sensorimotor system to predict the time evolution of the parameter and convey appropriate control commands acting with minimum latency (few milliseconds) from the sensory stimulus. We have derived a power-series expansion (U-expansion) to simulate the fast prediction strategy of the sensorimotor system. Given a time-function , a time-instant , and a time-increment , the U-expansion enables the calculation of from and the values of the derivatives of at arbitrarily different times , instead of time as in the Taylor series. For increments significantly greater than the maximum among the differences , the error associated with truncation of the U-expansion at a given order closely equalizes the error of the corresponding Taylor series () truncated at the same order. Small values of and higher values of correspond to the high-frequency discharge of sensory neurons and the need for longer-term prediction, respectively. Taking inspiration from the sensorimotor system, the U-expansion can potentially provide an analytical background for the development of algorithms designed for the fast and accurate feedback control of nonlinear systems.

20.
J Mot Behav ; 53(6): 669-679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33106112

RESUMO

Erected posture provides humans a large shoulder mobility that requires complex automatic muscle synergies to accomplish joint stability needs. This is evident in shoulder abduction, wherein the voluntary activation of glenohumeral muscles is coupled with an automatic recruitment of scapulothoracic muscles. Here, we investigated whether volitional modification of the scapular position, and dynamic scapular elevation, modulate the contraction timing of five shoulder muscles (middle deltoid, upper, middle and lower fiber of the trapezius, serratus anterior) during shoulder abduction. The results show matched contraction timings of the deltoid and upper trapezius across the scapular positions, whereas the contraction timings of the middle and lower fibers of the trapezius change secondary to the scapular position. These results might reflect different central strategies to coordinate the automatic sequences of contraction of the scapulothoracic muscles. This suggest a flexible and adaptable predisposition of the motor control system in exploring alternative solutions to accomplish the functional movement needs, such as the fulfillment of unconstrained movements. Intriguingly, the shoulder abduction may represent a powerful, non-invasive, and straightforward tool to deepen the understanding of the neural basis underlying the voluntary motor command modulation of the out-of-volition automatic muscle contractions.


Assuntos
Articulação do Ombro , Músculos Superficiais do Dorso , Eletromiografia , Humanos , Contração Isométrica , Contração Muscular , Músculo Esquelético , Escápula , Ombro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA