Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 123: 109797, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31874445

RESUMO

BACKGROUND: Non-allergic angioedema is largely driven by increased plasma levels of bradykinin and over-activation of bradykinin receptor type II (B2), but the specific downstream signalling pathways remain unclear. The aim of this study was to identify signal transduction events involved in bradykinin-induced dermal extravasation. METHODS: Quantification of dermal extravasation was accomplished following intradermal (i.d.) injection of bradykinin or the B2 agonist labradimil in mice with endothelial NO-synthase (eNOS) deficiency and in C57BL/6J mice pre-treated with vehicle, NO-synthase or cyclooxygenase (COX) inhibitors. In the multicentre clinical study ABRASE, 38 healthy volunteers received i.d. bradykinin injections into the ventral forearm before and after oral treatment with the COX inhibitor ibuprofen (600 mg). The primary endpoint of ABRASE was the mean time to complete resolution of wheals (TTCR) and the secondary endpoint was the change of maximal wheal size. RESULTS: Neither NOS inhibitors nor eNOS deficiency altered bradykinin-induced extravasation. In striking contrast, the COX inhibitors ibuprofen, diclofenac, SC560 and celecoxib significantly diminished this extravasation when given before injection. As for diclofenac, a similar but significantly lower effect was observed when given after i.d. injection of bradykinin. Similar results were obtained when bradykinin was replaced by labradimil. In volunteers, ibuprofen significantly reduced TTCR (P < 0.001) and maximal wheal size (P = 0.0044). CONCLUSION: These data suggest that COX activity contributes to bradykinin-induced dermal extravasation in mice and humans. In addition, our findings may open new treatment options and point to a potential activity of drugs interfering with the release of the COX substrate arachidonic acid, e.g. glucocorticoids.


Assuntos
Bradicinina/farmacologia , Derme/patologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Extravasamento de Materiais Terapêuticos e Diagnósticos , Humanos , Camundongos Endogâmicos C57BL
2.
Br J Pharmacol ; 175(10): 1607-1620, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29465763

RESUMO

BACKGROUND AND PURPOSE: Non-allergic angio-oedema is a life-threatening disease mediated by activation of bradykinin type 2 receptors (B2 receptors). The aim of this study was to investigate whether activation of B2 receptors by endogenous bradykinin contributes to physiological extravasation. This may shed new light on the assumption that treatment with an angiotensin converting enzyme inhibitor (ACEi) results in an alteration in the vascular barrier function predisposing to non-allergic angio-oedema. EXPERIMENTAL APPROACH: We generated a new transgenic mouse model characterized by endothelium-specific overexpression of the B2 receptor (B2tg ) and established a non-invasive two-photon laser microscopy approach to measure the kinetics of spontaneous extravasation in vivo. The B2tg mice showed normal morphology and litter size as compared with their transgene-negative littermates (B2n ). KEY RESULTS: Overexpression of B2 receptors was functional in conductance vessels and resistance vessels as evidenced by B2 receptor-mediated aortic dilation to bradykinin in presence of non-specific COX inhibitor diclofenac and by significant hypotension in B2tg respectively. Measurement of dermal extravasation by Miles assay showed that bradykinin induced extravasation was significantly increased in B2tg as compared with B2n . However, neither endothelial overexpression of B2 receptors nor treatment with the ACEi moexipril or B2 antagonist icatibant had any effect on spontaneous extravasation measured by two-photon laser microscopy. CONCLUSIONS AND IMPLICATIONS: Activation of B2 receptors does not appear to be involved in spontaneous extravasation. Therefore, the assumption that treatment with an ACEi results in an alteration in the physiological vascular barrier function predisposing to non-allergic angio-oedema is not supported by our findings.


Assuntos
Edema/metabolismo , Receptor B2 da Bradicinina/metabolismo , Pele/metabolismo , Animais , Bradicinina/sangue , Bradicinina/metabolismo , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor B2 da Bradicinina/genética
3.
Biochem Pharmacol ; 112: 24-36, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27235748

RESUMO

Increasing vascular NO levels following up-regulation of endothelial nitric oxide synthase (eNOS) is considered beneficial in cardiovascular disease. Whether such beneficial effects exerted by increased NO-levels include the vascular renin-angiotensin system remains elucidated. Exposure of endothelial cells originated from porcine aorta, mouse brain and human umbilical veins to different NO-donors showed that expression of the angiotensin-II-type-2-receptor (AT2) mRNA and protein is up-regulated by activation of soluble guanylyl cyclase, protein kinase G and p38 mitogen-activated protein kinase without changing AT2 mRNA stability. In mice, endothelial-specific overexpression of eNOS stimulated, while chronic treatment with the NOS-blocker l-nitroarginine inhibited AT2 expression. The NO-induced AT2 up-regulation was associated with a profound inhibition of angiotensin-converting enzyme (ACE)-activity. In endothelial cells this reduction of ACE-activity was reversed by either the AT2 antagonist PD 123119 or by inhibition of transcription with actinomycin D. Furthermore, in C57Bl/6 mice an acute i.v. bolus of l-nitroarginine did not change AT2-expression and ACE-activity suggesting that inhibition of ACE-activity by endogenous NO is crucially dependent on AT2 protein level. Likewise, three weeks of either voluntary or forced exercise training increased AT2 expression and reduced ACE-activity in C57Bl/6 but not in mice lacking eNOS suggesting significance of this signaling interaction for vascular physiology. Finally, aortic AT2 expression is about 5 times greater in female as compared to male C57Bl/6 and at the same time aortic ACE activity is reduced in females by more than 50%. Together these findings imply that endothelial NO regulates AT2 expression and that AT2 may regulate ACE-activity.


Assuntos
Células Endoteliais/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Animais , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Sistema Renina-Angiotensina/efeitos dos fármacos , Suínos , Regulação para Cima
4.
Neuropharmacology ; 107: 100-110, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27012889

RESUMO

Nicotinic acetylcholine receptor (nAChR) subtypes containing the α4 subunit, particularly α4ß2 nAChRs, play an important role in cognitive functioning. The impact of the smoking cessation aid varenicline, a selective partial α4ß2 nAChR agonist, on (1) changes of central protein and mRNA expression of this receptor and (2) on memory deficits in a mouse model of cognitive impairment was investigated. Protein and mRNA expression of both the α4 and ß2 receptor subunits in mouse brain endothelial and hippocampal cells as well as hippocampus and neocortex tissues were determined by western blot and realtime PCR, respectively. The ß2 antibody showed low specificity, though. Tissues were examined following a 2-week oral treatment with various doses of varenicline (0.01, 0.1, 1, 3 mg/kg/day) or vehicle. In addition, episodic memory of mice was assessed following this treatment with an object recognition task using (1) normal mice and (2) animals with anticholinergic-induced memory impairment (i.p. injection of 0.5 mg/kg scopolamine). Varenicline dose-dependently increased protein expression of both the α4 and ß2 subunit in cell cultures and brain tissues, respectively, but had no effect on mRNA expression of both subunits. Scopolamine injection induced a significant reduction of object memory in vehicle-treated mice. By contrast, cognitive performance was not altered by scopolamine in varenicline-treated mice. In conclusion, a 2-week oral treatment with varenicline prevented memory impairment in the scopolamine mouse model. In parallel, protein, but not mRNA expression was upregulated, suggesting a posttranscriptional mechanism. Our findings suggest a beneficial effect of varenicline on cognitive dysfunction.


Assuntos
Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Nootrópicos/farmacologia , Receptores Nicotínicos/metabolismo , Vareniclina/farmacologia , Administração Oral , Animais , Encéfalo/metabolismo , Linhagem Celular , Cognição/fisiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Escopolamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA