Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Physiol Plant ; 174(1): e13600, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34796959

RESUMO

Capsicum (pepper) is known for its poor seed germination, particularly seed longevity is usually much shorter than other Solanaceae. However, the molecular mechanisms involved are mostly unknown in these species. The present study examines the differences in seed longevity among Capsicum species and varietal types. Feral or less domesticated species, such as Capsicum chinense and particularly Capsicum frutescens, showed higher germination rates than the more domesticated Capsicum annuum after accelerated seed aging treatments. In addition, variability was detected in the expression of genes involved in the response to seed deterioration. The differences observed in ASPG1 expression led us to study the seed protein profile in dry and germinating seeds. Seed storage protein mobilization during germination was faster in seed aging-resistant genotypes. Similarly, the transcriptional change observed for the orthologous gene of the trans-species regulator AtHB25 prompted us to study the structure and molecular components of the seed coat in peppers. All the Capsicum pepper accessions analyzed presented very lignified testa and we observed a positive correlation between the amount of lignin and seed viability. Our results provide essential information to explain the poor germination observed in pepper seeds and provide an experimental framework for future improvements in this important character.


Assuntos
Capsicum , Capsicum/genética , Germinação , Longevidade , Sementes/metabolismo
2.
New Phytol ; 231(2): 679-694, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864680

RESUMO

Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Cell Environ ; 43(10): 2523-2539, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32519347

RESUMO

Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome-wide analysis, using publicly available single-nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed-longevity in knock-out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P-450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing.


Assuntos
Arabidopsis/genética , Genes de Plantas/genética , Longevidade/genética , Estresse Oxidativo/genética , Sementes/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Microscopia Confocal , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Genética Reversa , Sementes/fisiologia , Sementes/ultraestrutura , Transcriptoma
4.
Plant Cell Environ ; 43(2): 315-326, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31600827

RESUMO

Permeability is a crucial trait that affects seed longevity and is regulated by different polymers including proanthocyanidins, suberin, cutin and lignin located in the seed coat. By testing mutants in suberin transport and biosynthesis, we demonstrate the importance of this biopolymer to cope with seed deterioration. Transcriptomic analysis of cog1-2D, a gain-of-function mutant with increased seed longevity, revealed the upregulation of several peroxidase genes. Reverse genetics analysing seed longevity uncovered redundancy within the seed coat peroxidase gene family; however, after controlled deterioration treatment, seeds from the prx2 prx25 double and prx2 prx25 prx71 triple mutant plants presented lower germination than wild-type plants. Transmission electron microscopy analysis of the seed coat of these mutants showed a thinner palisade layer, but no changes were observed in proanthocyanidin accumulation or in the cuticle layer. Spectrophotometric quantification of acetyl bromide-soluble lignin components indicated changes in the amount of total polyphenolics derived from suberin and/or lignin in the mutant seeds. Finally, the increased seed coat permeability to tetrazolium salts observed in the prx2 prx25 and prx2 prx25 prx71 mutant lines suggested that the lower permeability of the seed coats caused by altered polyphenolics is likely to be the main reason explaining their reduced seed longevity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peroxidases/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação/genética , Germinação/fisiologia , Lignina , Metabolismo dos Lipídeos , Lipídeos , Lipídeos de Membrana , Mutação , Peroxidases/genética , Proantocianidinas , Sementes/genética
5.
Int J Mol Sci ; 21(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050714

RESUMO

Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not organic acid tolerance. Addition of acetic acid to wild-type plantlets induces production of ROS (Reactive Oxygen Species) measured by dichlorodihydrofluorescein diacetate. Acid-induced ROS production is greatly decreased in sbt4.13-1D and atrboh-D,F mutants. The latter is deficient in two major NADPH oxidases (NOXs) and is tolerant to organic acids. These results suggest that intracellular acidification activates NOXs and the resulting oxidative stress is important for inhibition of growth. The inhibition of acid-activated NOXs in the sbt4.13-1D mutant compensates inhibition of PMA to increase acid tolerance.


Assuntos
Germinação , Estresse Oxidativo , Prótons , Subtilisinas/genética , Arabidopsis , Proteínas de Arabidopsis/genética , Mutação , NADPH Oxidases/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Subtilisinas/metabolismo
6.
J Exp Bot ; 66(3): 813-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25371509

RESUMO

The stress hormone abscisic acid (ABA) induces expression of defence genes in many organs, modulates ion homeostasis and metabolism in guard cells, and inhibits germination and seedling growth. Concerning the latter effect, several mutants of Arabidopsis thaliana with improved capability for H(+) efflux (wat1-1D, overexpression of AKT1 and ost2-1D) are less sensitive to inhibition by ABA than the wild type. This suggested that ABA could inhibit H(+) efflux (H(+)-ATPase) and induce cytosolic acidification as a mechanism of growth inhibition. Measurements to test this hypothesis could not be done in germinating seeds and we used roots as the most convenient system. ABA inhibited the root plasma-membrane H(+)-ATPase measured in vitro (ATP hydrolysis by isolated vesicles) and in vivo (H(+) efflux from seedling roots). This inhibition involved the core ABA signalling elements: PYR/PYL/RCAR ABA receptors, ABA-inhibited protein phosphatases (HAB1), and ABA-activated protein kinases (SnRK2.2 and SnRK2.3). Electrophysiological measurements in root epidermal cells indicated that ABA, acting through the PYR/PYL/RCAR receptors, induced membrane hyperpolarization (due to K(+) efflux through the GORK channel) and cytosolic acidification. This acidification was not observed in the wat1-1D mutant. The mechanism of inhibition of the H(+)-ATPase by ABA and its effects on cytosolic pH and membrane potential in roots were different from those in guard cells. ABA did not affect the in vivo phosphorylation level of the known activating site (penultimate threonine) of H(+)-ATPase in roots, and SnRK2.2 phosphorylated in vitro the C-terminal regulatory domain of H(+)-ATPase while the guard-cell kinase SnRK2.6/OST1 did not.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , ATPases Translocadoras de Prótons/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Cloretos/metabolismo , Citosol/metabolismo , Íons/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Potássio/metabolismo , ATPases Translocadoras de Prótons/metabolismo
7.
Plant J ; 70(4): 704-16, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22268595

RESUMO

Intracellular pH must be kept close to neutrality to be compatible with cellular functions, but the mechanisms of pH homeostasis and the responses to intracellular acidification are mostly unknown. In the plant Arabidopsis thaliana, we found that intracellular acid stress generated by weak organic acids at normal external pH induces expression of several chaperone genes, including ROF2, which encodes a peptidyl-prolyl cis-trans isomerase of the FK506-binding protein class. Loss of function of ROF2, and especially double mutation of ROF2 and the closely related gene ROF1, results in acid sensitivity. Over-expression of ROF2 confers tolerance to intracellular acidification by increasing proton extrusion from cells. The activation of the plasma membrane proton pump (H(+) -ATPase) is indirect: over-expression of ROF2 activates K(+) uptake, causing depolarization of the plasma membrane, which activates the electrogenic H(+) pump. The depolarization of ROF2 over-expressing plants explains their tolerance to toxic cations such as lithium, norspermidine and hygromycin B, whose uptake is driven by the membrane potential. As ROF2 induction and intracellular acidification are common consequences of many stresses, this mechanism of pH homeostasis may be of general importance for stress tolerance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Homeostase , Peptidilprolil Isomerase/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Espaço Intracelular/química , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Peptidilprolil Isomerase/metabolismo , Plantas Geneticamente Modificadas , Potássio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Prótons , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rubídio/metabolismo , Transcriptoma
8.
Plants (Basel) ; 12(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37514340

RESUMO

Seeds are specialized plant organs that carry, nurture, and protect plant offspring. Developmental coordination between the three genetically distinct seed tissues (the embryo, endosperm, and seed coat) is crucial for seed viability. In this study, we explore the relationship between the TFs AtHB25 and ICE1. Previous results identified ICE1 as a target gene of AtHB25. In seeds, a lack of ICE1 (ice1-2) suppresses the enhanced seed longevity and impermeability of the overexpressing mutant athb25-1D, but surprisingly, seed coat lipid polyester deposition is not affected, as shown by the double-mutant athb25-1D ice1-2 seeds. zou-4, another mutant lacking the transcriptional program for proper endosperm maturation and for which the endosperm persists, also presents a high sensitivity to seed aging. Analysis of gso1, gso2, and tws1-4 mutants revealed that a loss of embryo cuticle integrity does not underlie the seed-aging sensitivity of ice1-2 and zou-4. However, scanning electron microscopy revealed the presence of multiple fractures in the seed coats of the ice1 and zou mutants. Thus, this study highlights the importance of both seed coat composition and integrity in ensuring longevity and demonstrates that these parameters depend on multiple factors.

9.
Cancer Lett ; 226(1): 17-25, 2005 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16004929

RESUMO

A phenolic fraction purified form defatted seeds of Oenothera biennis promoted selective apoptosis of human and mouse bone marrow-derived cell lines following first-order kinetics through a caspase-dependent pathway. In non-leukemia tumour cell lines, such as human colon carcinoma CaCo(2) cells and mouse fibrosarcoma WEHI164 cells, this fraction inhibited (3)H-thymidine incorporation but not cell death or cell cycle arrest. Human peripheral blood mononuclear cells showed low sensitivity to treatment. Single bolus injection of the phenolic fraction could delay the growth of established myeloma tumours in syngeneic animals. HPLC and mass spectrometry analysis revealed that the fraction contains gallic acid. However, the biological activity of the fraction differs from the activity of this phenol and hence it should be attributed to other co-purified molecules which remain still unidentified.


Assuntos
Ácido Gálico/farmacologia , Oenothera biennis/química , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células CACO-2 , Caspases/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fibrossarcoma/patologia , Humanos , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Mieloma Múltiplo/tratamento farmacológico , Fenóis , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA