Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genomics ; 112(3): 2541-2549, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057913

RESUMO

Chromosome segregation defects lead to aneuploidy which is a major feature of solid tumors. How diploid cells face chromosome mis-segregation and how aneuploidy is tolerated in tumor cells are not completely defined yet. Thus, an important goal of cancer genetics is to identify gene networks that underlie aneuploidy and are involved in its tolerance. To this aim, we induced aneuploidy in IMR90 human primary cells by depleting pRB, DNMT1 and MAD2 and analyzed their gene expression profiles by microarray analysis. Bioinformatic analysis revealed a common gene expression profile of IMR90 cells that became aneuploid. Gene Set Enrichment Analysis (GSEA) also revealed gene-sets/pathways that are shared by aneuploid IMR90 cells that may be exploited for novel therapeutic approaches in cancer. Furthermore, Protein-Protein Interaction (PPI) network analysis identified TOP2A and KIF4A as hub genes that may be important for aneuploidy establishment.


Assuntos
Aneuploidia , DNA (Citosina-5-)-Metiltransferase 1/genética , Regulação da Expressão Gênica , Proteínas Mad2/genética , Proteína do Retinoblastoma/genética , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Proteínas Mad2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento de Interação de Proteínas , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Proteína do Retinoblastoma/metabolismo , Transcriptoma
2.
BMC Bioinformatics ; 20(Suppl 4): 120, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999843

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNA molecules mediating the translational repression and degradation of target mRNAs in the cell. Mature miRNAs are used as a template by the RNA-induced silencing complex (RISC) to recognize the complementary mRNAs to be regulated. To discern further RISC functions, we analyzed the activities of two RISC proteins, AGO2 and GW182, in the MCF-7 human breast cancer cell line. METHODS: We performed three RIP-Chip experiments using either anti-AGO2 or anti-GW182 antibodies and compiled a data set made up of the miRNA and mRNA expression profiles of three samples for each experiment. Specifically, we analyzed the input sample, the immunoprecipitated fraction and the unbound sample resulting from the RIP experiment. We used the expression profile of the input sample to compute several variables, using formulae capable of integrating the information on miRNA binding sites, both in the 3'UTR and coding regions, with miRNA and mRNA expression level profiles. We compared immunoprecipitated vs unbound samples to determine the enriched or underrepresented genes in the immunoprecipitated fractions, independently for AGO2 and GW182 related samples. RESULTS: For each of the two proteins, we trained and tested several support vector machine algorithms capable of distinguishing the enriched from the underrepresented genes that were experimentally detected. The most efficient algorithm for distinguishing the enriched genes in AGO2 immunoprecipitated samples was trained by using variables involving the number of binding sites in both the 3'UTR and coding region, integrated with the miRNA expression profile, as expected for miRNA targets. On the other hand, we found that the best variable for distinguishing the enriched genes in the GW182 immunoprecipitated samples was the length of the coding region. CONCLUSIONS: Due to the major role of GW182 in GW/P-bodies, our data suggests that the AGO2-GW182 RISC recruits genes based on miRNA binding sites in the 3'UTR and coding region, but only the longer mRNAs probably remain sequestered in GW/P-bodies, functioning as a repository for translationally silenced RNAs.


Assuntos
Proteínas Argonautas/metabolismo , Autoantígenos/metabolismo , Imunoprecipitação da Cromatina/métodos , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Argonautas/genética , Autoantígenos/genética , Sítios de Ligação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células MCF-7 , MicroRNAs/genética , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Máquina de Vetores de Suporte
3.
Genes (Basel) ; 12(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34573304

RESUMO

The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore-microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore-microtubule capture and stable attachment, as well as congression of chromosomes to the metaphase plate. As the function of CENP-E is restricted to mitosis, its haploinsufficiency has been used to study the induced cell aneuploidy; however, the gene expression profile triggered by CENP-E reduction in normal cells has never been explored. To fill this gap, here we investigated whether a gene network exists that is associated with an siRNA-induced 50% reduction in CENP-E and consequent aneuploidy. Gene expression microarray analyses were performed at early and late timepoints after transfection. Initially, cell cycle regulation and stress response pathways were downregulated, while afterwards pathways involved in epithelial-mesenchymal transition, hypoxia and xenobiotic metabolism were altered. Collectively, our results suggest that CENP-E reduction triggers a gene expression program that recapitulates some features of tumor cells.


Assuntos
Transcriptoma
4.
Oncotarget ; 9(49): 29064-29081, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30018736

RESUMO

The S100 gene family is the largest subfamily of calcium binding proteins of EF-hand type, expressed in tissue and cell-specific manner, acting both as intracellular regulators and extracellular mediators. There is a growing interest in the S100 proteins and their relationships with different cancers because of their involvement in a variety of biological events closely related to tumorigenesis and cancer progression. However, the collective role and the possible coordination of this group of proteins, as well as the functional implications of their expression in breast cancer (BC) is still poorly known. We previously reported a large-scale proteomic investigation performed on BC patients for the screening of multiple forms of S100 proteins. Present study was aimed to assess the functional correlation between protein and gene expression patterns and the prognostic values of the S100 family members in BC. By using data mining, we showed that S100 members were collectively deregulated in BC, and their elevated expression levels were correlated with shorter survival and more aggressive phenotypes of BC (basal like, HER2 enriched, ER-negative and high grading). Moreover a multi-omics functional network analysis highlighted the regulatory effects of S100 members on several cellular pathways associated with cancer and cancer progression, expecially immune response and inflammation. Interestingly, for the first time, a pathway analysis was successfully applied on different omics data (transcriptomics and proteomics) revealing a good convergence between pathways affected by S100 in BC. Our data confirm S100 members as a promising panel of biomarkers for BC prognosis.

5.
Cancer Cell ; 30(2): 273-289, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27478041

RESUMO

The adipocyte-rich microenvironment forms a niche for ovarian cancer metastasis, but the mechanisms driving this process are incompletely understood. Here we show that salt-inducible kinase 2 (SIK2) is overexpressed in adipocyte-rich metastatic deposits compared with ovarian primary lesions. Overexpression of SIK2 in ovarian cancer cells promotes abdominal metastasis while SIK2 depletion prevents metastasis in vivo. Importantly, adipocytes induce calcium-dependent activation and autophosphorylation of SIK2. Activated SIK2 plays a dual role in augmenting AMPK-induced phosphorylation of acetyl-CoA carboxylase and in activating the PI3K/AKT pathway through p85α-S154 phosphorylation. These findings identify SIK2 at the apex of the adipocyte-induced signaling cascades in cancer cells and make a compelling case for targeting SIK2 for therapy in ovarian cancer.


Assuntos
Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Adipócitos/enzimologia , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Metástase Neoplásica , Proteína Oncogênica v-akt/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA