Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Hum Genet ; 103(4): 484-497, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245029

RESUMO

The classification of genetic variants represents a major challenge in the post-genome era by virtue of their extraordinary number and the complexities associated with ascribing a clinical impact, especially for disorders exhibiting exceptional phenotypic, genetic, and allelic heterogeneity. To address this challenge for hearing loss, we have developed the Deafness Variation Database (DVD), a comprehensive, open-access resource that integrates all available genetic, genomic, and clinical data together with expert curation to generate a single classification for each variant in 152 genes implicated in syndromic and non-syndromic deafness. We evaluate 876,139 variants and classify them as pathogenic or likely pathogenic (more than 8,100 variants), benign or likely benign (more than 172,000 variants), or of uncertain significance (more than 695,000 variants); 1,270 variants are re-categorized based on expert curation and in 300 instances, the change is of medical significance and impacts clinical care. We show that more than 96% of coding variants are rare and novel and that pathogenicity is driven by minor allele frequency thresholds, variant effect, and protein domain. The mutational landscape we define shows complex gene-specific variability, making an understanding of these nuances foundational for improved accuracy in variant interpretation in order to enhance clinical decision making and improve our understanding of deafness biology.


Assuntos
Surdez/genética , Mutação/genética , Bases de Dados Genéticas , Frequência do Gene/genética , Genômica/métodos , Perda Auditiva/genética , Humanos
2.
J Am Soc Nephrol ; 27(4): 1245-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26283675

RESUMO

The thrombotic microangiopathies (TMAs) and C3 glomerulopathies (C3Gs) include a spectrum of rare diseases such as atypical hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, C3GN, and dense deposit disease, which share phenotypic similarities and underlying genetic commonalities. Variants in several genes contribute to the pathogenesis of these diseases, and identification of these variants may inform the diagnosis and treatment of affected patients. We have developed and validated a comprehensive genetic panel that screens all exons of all genes implicated in TMA and C3G. The closely integrated pipeline implemented includes targeted genomic enrichment, massively parallel sequencing, bioinformatic analysis, and a multidisciplinary conference to analyze identified variants in the context of each patient's specific phenotype. Herein, we present our 1-year experience with this panel, during which time we studied 193 patients. We identified 17 novel and 74 rare variants, which we classified as pathogenic (11), likely pathogenic (12), and of uncertain significance (68). Compared with controls, patients with C3G had a higher frequency of rare and novel variants in C3 convertase (C3 and CFB) and complement regulator (CFH, CFI, CFHR5, and CD46) genes (P<0.05). In contrast, patients with TMA had an increase in rare and novel variants only in complement regulator genes (P<0.01), a distinction consistent with differing sites of complement dysregulation in these two diseases. In summary, we were able to provide a positive genetic diagnosis in 43% and 41% of patients carrying the clinical diagnosis of C3G and TMA, respectively.


Assuntos
Nefropatias/diagnóstico , Nefropatias/genética , Glomérulos Renais , Microangiopatias Trombóticas/diagnóstico , Microangiopatias Trombóticas/genética , Adolescente , Criança , Pré-Escolar , Complemento C3 , Feminino , Testes Genéticos/métodos , Humanos , Nefropatias/imunologia , Masculino
3.
Hear Res ; 292(1-2): 51-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22975204

RESUMO

BACKGROUND: Up to 7% of patients with severe-to-profound deafness do not benefit from cochlear implantation. Given the high surgical implantation and clinical management cost of cochlear implantation (>$1 million lifetime cost), prospective identification of the worst performers would reduce unnecessary procedures and healthcare costs. Because cochlear implants bypass the membranous labyrinth but rely on the spiral ganglion for functionality, we hypothesize that cochlear implant (CI) performance is dictated in part by the anatomic location of the cochlear pathology that underlies the hearing loss. As a corollary, we hypothesize that because genetic testing can identify sites of cochlear pathology, it may be useful in predicting CI performance. METHODS: 29 adult CI recipients with idiopathic adult-onset severe-to-profound hearing loss were studied. DNA samples were subjected to solution-based sequence capture and massively parallel sequencing using the OtoSCOPE(®) platform. The cohort was divided into three CI performance groups (good, intermediate, poor) and genetic causes of deafness were correlated with audiometric data to determine whether there was a gene-specific impact on CI performance. RESULTS: The genetic cause of deafness was determined in 3/29 (10%) individuals. The two poor performers segregated mutations in TMPRSS3, a gene expressed in the spiral ganglion, while the good performer segregated mutations in LOXHD1, a gene expressed in the membranous labyrinth. Comprehensive literature review identified other good performers with mutations in membranous labyrinth-expressed genes; poor performance was associated with spiral ganglion-expressed genes. CONCLUSIONS: Our data support the underlying hypothesis that mutations in genes preferentially expressed in the spiral ganglion portend poor CI performance while mutations in genes expressed in the membranous labyrinth portend good CI performance. Although the low mutation rate in known deafness genes in this cohort likely relates to the ascertainment characteristics (postlingual hearing loss in adult CI recipients), these data suggest that genetic testing should be implemented as part of the CI evaluation to test this association prospectively.


Assuntos
Implante Coclear/instrumentação , Implantes Cocleares , Correção de Deficiência Auditiva , Análise Mutacional de DNA , Perda Auditiva/genética , Perda Auditiva/reabilitação , Mutação , Pessoas com Deficiência Auditiva/reabilitação , Gânglio Espiral da Cóclea/fisiopatologia , Estimulação Acústica , Adulto , Idoso , Análise de Variância , Audiometria de Tons Puros , Limiar Auditivo , Proteínas de Transporte/genética , Distribuição de Qui-Quadrado , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Perda Auditiva/diagnóstico , Perda Auditiva/patologia , Perda Auditiva/fisiopatologia , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Seleção de Pacientes , Fenótipo , Serina Endopeptidases/genética , Índice de Gravidade de Doença , Gânglio Espiral da Cóclea/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA