Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Remote Sens Ecol Conserv ; 9(4): 483-500, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38505567

RESUMO

Birds are useful indicators of overall biodiversity, which continues to decline globally, despite targets to reduce its loss. The aim of this paper is to understand the importance of different spatial drivers for modelling bird distributions. Specifically, it assesses the importance of satellite-derived measures of habitat productivity, heterogeneity and landscape structure for modelling bird diversity across Great Britain. Random forest (RF) regression is used to assess the extent to which a combination of satellite-derived covariates explain woodland and farmland bird diversity and richness. Feature contribution analysis is then applied to assess the relationships between the response variable and the covariates in the final RF models. We show that much of the variation in farmland and woodland bird distributions is explained (R 2 0.64-0.77) using monthly habitat-specific productivity values and landscape structure (FRAGSTATS) metrics. The analysis highlights important spatial drivers of bird species richness and diversity, including high productivity grassland during spring for farmland birds and woodland patch edge length for woodland birds. The feature contribution provides insight into the form of the relationship between the spatial drivers and bird richness and diversity, including when a particular spatial driver affects bird richness positively or negatively. For example, for woodland bird diversity, the May 80th percentile Normalized Difference Vegetation Index (NDVI) for broadleaved woodland has a strong positive effect on bird richness when NDVI is >0.7 and a strong negative effect below. If relationships such as these are stable over time, they offer a useful analytical tool for understanding and comparing the influence of different spatial drivers.

2.
ACS Cent Sci ; 9(12): 2339-2349, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38161376

RESUMO

Antibiotic-resistant Enterobacterales that produce oxacillinase (OXA)-48-like Class D ß-lactamases are often linked to increased clinical mortality. Though the catalytic mechanism of OXA-48 is known, the molecular origin of its biphasic kinetics has been elusive. We here identify selective chloride binding rather than decarbamylation of the carbamylated lysine as the source of biphasic kinetics, utilizing isothermal titration calorimetry (ITC) to monitor the complete reaction course with the OXA-48 variant having a chemically stable N-acetyl lysine. Further structural investigation enables us to capture an unprecedented inactive acyl intermediate wedged in place by a halide ion paired with a conserved active site arginine. Supported by mutagenesis and mathematical simulation, we identify chloride as a "Janus effector" that operates by allosteric activation of the burst phase and by inhibition of the steady state in kinetic assays of ß-lactams. We show that chloride-induced biphasic kinetics directly affects antibiotic efficacy and facilitates the differentiation of clinical isolates encoding Class D from Class A and B carbapenemases. As chloride is present in laboratory and clinical procedures, our discovery greatly expands the roles of chloride in modulating enzyme catalysis and highlights its potential impact on the pharmacokinetics and efficacy of antibiotics during in vivo treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA