Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cereb Cortex ; 33(12): 7627-7641, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36939283

RESUMO

The etiology of Alzheimer's dementia has been hypothesized in terms of basal forebrain cholinergic decline, and in terms of reflecting beta-amyloid neuropathology. To study these different biological elements, we activated the basal forebrain in 5xFAD Alzheimer's model mice and littermates. Mice received 5 months of 1 h per day intermittent stimulation of the basal forebrain, which includes cholinergic projections to the cortical mantle. Then, mice were behaviorally tested followed by tissue analysis. The 5xFAD mice performed worse in water-maze testing than littermates. Stimulated groups learned the water maze better than unstimulated groups. Stimulated groups had 2-3-fold increases in frontal cortex immunoblot measures of the neurotrophin receptors for nerve growth factor and brain-derived neurotrophic factor, and a more than 50% decrease in the expression of amyloid cleavage enzyme BACE1. Stimulation also led to lower Aß42 in 5xFAD mice. These data support a causal relationship between basal forebrain activation and both neurotrophin activation and reduced Aß42 generation and accumulation. The observation that basal forebrain activation suppresses Aß42 accumulation, combined with the known high-affinity antagonism of nicotinic receptors by Aß42, documents bidirectional antagonism between acetylcholine and Aß42.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Camundongos , Animais , Doença de Alzheimer/patologia , Receptores de Fator de Crescimento Neural , Camundongos Transgênicos , Memória Espacial , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Colinérgicos
2.
Eur J Neurosci ; 46(2): 1779-1789, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28544049

RESUMO

Learning to associate a stimulus with reinforcement causes plasticity in primary sensory cortex. Neural activity caused by the associated stimulus is paired with reinforcement, but population analyses have not found a selective increase in response to that stimulus. Responses to other stimuli increase as much as, or more than, responses to the associated stimulus. Here, we applied population analysis at a new time point and additionally evaluated whether cholinergic receptor blockers interacted with the plastic changes in cortex. Three days of tone identification behavior caused responsiveness to increase broadly across primary auditory cortex, and target responses strengthened less than overall responsiveness. In pharmacology studies, behaviorally impairing doses of selective acetylcholine receptor blockers were administered during behavior. Neural responses were evaluated on the following day, while the blockers were absent. The muscarinic group, blocked by scopolamine, showed lower responsiveness and an increased response to the tone identification target that exceeded both the 3-day control group and task-naïve controls. Also, a selective increase in the late phase of the response to the tone identification stimulus emerged. Nicotinic receptor antagonism, with mecamylamine, more modestly lowered responses the following day and lowered target responses more than overall responses. Control acute studies demonstrated the muscarinic block did not acutely alter response rates, but the nicotinic block did. These results lead to the hypothesis that the decrease in the proportion of the population spiking response that is selective for the target may be explained by the balance between effects modulated by muscarinic and nicotinic receptors.


Assuntos
Córtex Auditivo/metabolismo , Percepção Auditiva/fisiologia , Neurônios/metabolismo , Reconhecimento Fisiológico de Modelo/fisiologia , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Estimulação Acústica , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/efeitos dos fármacos , Percepção Auditiva/efeitos dos fármacos , Mapeamento Encefálico , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Masculino , Mecamilamina/farmacologia , Microeletrodos , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Reconhecimento Fisiológico de Modelo/efeitos dos fármacos , Ratos Sprague-Dawley , Escopolamina/farmacologia
3.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38463995

RESUMO

Activation of the basal forebrain leads to increases in the expression of the nerve growth factor receptor, Tropomyosin receptor kinase A (TrkA) and decreases in expression of the beta amyloid cleavage enzyme 1 (BACE1) in the cerebral cortex of both sexes of 5xFAD mice. The studies described in this report were designed to determine if these changes were dependent on acetylcholine receptors. Mice were stimulated unilaterally in the basal forebrain for two weeks. Animals were administered a cholinergic antagonist, or saline, 30 minutes prior to stimulation. Animals administered saline exhibited significant increases in TrkA expression and decreases in BACE1 in the stimulated hemisphere relative to the unstimulated. While both nonselective nicotinic and muscarinic acetylcholine receptor blockade attenuated the BACE1 decline, only the nicotinic receptor antagonism blocked the TrkA increase. Next, we applied selective nicotinic antagonists, and the α7 antagonist blocked the TrkA increases, but the α4ß2 antagonist did not. BACE1 declines were not blocked by either intervention. Mice with a loxP conditional knockout of the gene for the α7 nicotinic receptor were also employed in these studies. Animals were either stimulated bilaterally for two weeks, or left unstimulated. With or without stimulation, the expression of TrkA receptors was lower in the cortical region with the α7 nicotinic receptor knockdown. We thus conclude that α7 nicotinic receptor activation is necessary for normal expression of TrkA and increases caused by basal forebrain activation, while BACE1 declines caused by stimulation have dependency on a broader array of receptor subtypes.

4.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39131297

RESUMO

Background: Deep brain stimulation (DBS), the direct electrical stimulation of neuronal tissue in the basal forebrain to enhance release of the neurotransmitter acetylcholine, is under consideration as a method to improve executive function in patients with dementia. While some small studies indicate a positive response in the clinical setting, the relationship between DBS and acetylcholine pharmacokinetics is incompletely understood. Objective: We examined the cortical acetylcholine response to different stimulation parameters of the basal forebrain. Methods: 2-photon imaging was combined with deep brain stimulation. Stimulating electrodes were implanted in the subpallidal basal forebrain, and the ipsilateral somatosensory cortex was imaged. Acetylcholine activity was determined using the GRABACh-3.0 muscarinic acetylcholine receptor sensor, and blood vessels were imaged with Texas red. Results: Experiments manipulating pulse train frequency demonstrated that integrated acetylcholine induced fluorescence was insensitive to frequency, and that peak levels were achieved with frequencies from 60 to 130 Hz. Altering pulse train length indicated that longer stimulation resulted in higher peaks and more activation with sublinear summation. The acetylcholinesterase inhibitor donepezil increased the peak response to 10s of stimulation at 60Hz, and the integrated response increased 57% with the 2 mg/kg dose, and 126% with the 4 mg/kg dose. Acetylcholine levels returned to baseline with a time constant of 14 to 18 seconds in all experiments. Conclusions: These data demonstrate that acetylcholine receptor activation is insensitive to frequency between 60 and 130 Hz. High peak responses are achieved with up to 900 pulses. Donepezil increases total acetylcholine receptor activation associated with DBS but did not change temporal kinetics. The long time constants observed in the cerebral cortex add to the evidence supporting volume in addition to synaptic transmission.

5.
J Neurophysiol ; 109(4): 1036-44, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23197458

RESUMO

Selective attention experimental designs have shown that neural responses to stimuli in primary somatosensory cortex are stronger when the sensory stimuli are task relevant. Other studies have used animals under no task demands for data collection. The relationship between neural responses in the brain during behavior, and while an animal has no task demands, remains underexplored. We trained two animals to perform somatosensory detection for several weeks, followed by somatosensory discrimination for several weeks. Data in response to physically identical stimuli were collected from cortical implants while the animal was under no task demands before each behavioral session and also during that behavioral session. The Fourier spectra of the field potentials during detection or discrimination compared with the no task condition demonstrated suppression of the somatosensory µ-rhythm that is associated with readiness and anticipation of cognitive use of somatosensory and motor inputs. Responses to the task target were stronger during detection and discrimination than in the no task condition. The amplitude normalized time course of the target evoked response was similar in both cases. Evoked responses to the task distractor were not significantly stronger during behavior than in recordings under no task demands. The normalized time course of the distractor responses showed a suppression that peaks 30-35 ms after the onset of the response. The selectivity of this within trial suppression is the same as the selectivity of enduring suppression evident in studies of sensory cortical plasticity, which suggests the same neural process may be responsible for both.


Assuntos
Aprendizagem por Discriminação , Potenciais Somatossensoriais Evocados , Córtex Somatossensorial/fisiologia , Análise e Desempenho de Tarefas , Animais , Atenção , Ondas Encefálicas , Discriminação Psicológica , Análise de Fourier , Macaca mulatta , Masculino , Plasticidade Neuronal
6.
Neurobiol Learn Mem ; 101: 75-84, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23357284

RESUMO

Auditory-cued behavioral training can alter neural circuits in primary auditory cortex (A1), but the mechanisms and consequences of experience-dependent cortical plasticity are not fully understood. To address this issue, we trained adult rats to detect a 5 kHz target in order to receive a food reward. After 14 days training we identified three locations within A1: (i) the region representing the characteristic frequency (CF) 5 kHz, (ii) a nearby region with CF ∼10 kHz, and (iii) a more distant region with CF ∼20 kHz. In order to compare functional connectivity in A1 near to, vs. far from, the representation of the target frequency, we placed a 16-channel multiprobe in middle- (∼10 kHz) and high- (∼20 kHz) CF regions and obtained current-source density (CSD) profiles evoked by a range of tone stimuli (CF±1-3 octaves in quarter-octave steps). Our aim was to construct "CSD receptive fields" (CSD RFs) in order to determine the laminar and spectral profile of tone-evoked current sinks, and infer changes to thalamocortical and intracortical inputs. Behavioral training altered CSD RFs at the 10 kHz, but not 20 kHz, site relative to CSD RFs in untrained control animals. At the 10 kHz site, current sinks evoked by the target frequency were enhanced in layer 2/3, but the initial current sink in layer 4 was not altered. The results imply training-induced plasticity along intracortical pathways connecting the target representation with nearby cortical regions. Finally, we related behavioral performance (sensitivity index, d') to CSD responses in individual animals, and found a significant correlation between the development of d' over training and the amplitude of the target-evoked current sink in layer 2/3. The results suggest that plasticity along intracortical pathways is important for auditory learning.


Assuntos
Córtex Auditivo/fisiologia , Condicionamento Operante/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Animais , Masculino , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Proc Natl Acad Sci U S A ; 107(33): 14828-32, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20675582

RESUMO

Models of learning-dependent sensory cortex plasticity require local activity and reinforcement. An alternative proposes that neural activity involved in anticipation of a sensory stimulus, or the preparatory set, can direct plasticity so that changes could occur in regions of sensory cortex lacking activity. To test the necessity of target-induced activity for initial sensory learning, we trained rats to detect a low-frequency sound. After learning, Arc expression and physiologically measured neuroplasticity were strong in a high-frequency auditory cortex region with very weak target-induced activity in control animals. After 14 sessions, Arc and neuroplasticity were aligned with target-induced activity. The temporal and topographic correspondence between Arc and neuroplasticity suggests Arc may be intrinsic to the neuroplasticity underlying perceptual learning. Furthermore, not all neuroplasticity could be explained by activity-dependent models but can be explained if the neural activity involved in the preparatory set directs plasticity.


Assuntos
Córtex Auditivo/fisiologia , Proteínas do Citoesqueleto/fisiologia , Aprendizagem/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Córtex Auditivo/metabolismo , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Proteínas do Citoesqueleto/genética , Potenciais Evocados Auditivos/fisiologia , Expressão Gênica , Hibridização in Situ Fluorescente , Masculino , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Fatores de Tempo
9.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35058309

RESUMO

The action of acetylcholine in the cortex is critical for cognitive functions and cholinergic drugs can improve functions such as attention and working memory. An alternative means of enhancing cholinergic neuromodulation in primates is the intermittent electrical stimulation of the cortical source of acetylcholine, the nucleus basalis (NB) of Meynert. NB stimulation generally increases firing rate of neurons in the prefrontal cortex, however its effects on single neurons are diverse and complex. We sought to understand how NB stimulation affects global measures of neural activity by recording and analyzing local field potentials (LFPs) in monkeys as they performed working memory tasks. NB stimulation primarily decreased power in the alpha frequency range during the delay interval of working memory tasks. The effect was consistent across variants of the task. No consistent modulation in the delay interval of the task was observed in the gamma frequency range, which has previously been implicated in the maintenance of working memory. Our results reveal global effects of cholinergic neuromodulation via deep brain stimulation, an emerging intervention for the improvement of cognitive function.


Assuntos
Núcleo Basal de Meynert , Memória de Curto Prazo , Acetilcolina/farmacologia , Animais , Núcleo Basal de Meynert/fisiologia , Memória de Curto Prazo/fisiologia , Periodicidade , Córtex Pré-Frontal/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-35905064

RESUMO

To stimulate the auditory nerve, cochlear implants directly inject electrical current into surrounding tissue via an implanted electrode array. While many cochlear implant users achieve strong speech perception scores, there remains significant variability. Since cochlear implant electrode arrays are surrounded by a conductive fluid, perilymph, a spread of excitation occurs. The functionality of the cochlea is spatially dependent, and a wider area of excitation negatively affects the hearing of the user. Importantly, magnetic fields are unaffected by the material properties of biological components. To utilize the electromagnetic properties of the human ear, a microcoil array was developed. The microcoils are 4-turn solenoids with a 250- [Formula: see text] turn radius and a 31.75- [Formula: see text] wire radius, coated with Parylene-C. The efficient design was implemented to accelerate testing. The obtained results describe stimulation capabilities. Functionality was validated using a frequency response analyzer to measure how the generated electromagnetic power radiates in space. 99.8% power loss was observed over a 100- [Formula: see text] separation between a pair of identical microcoils. Obtained through finite-element modeling, the microcoils can be driven by a 60 mA, 5 kHz, sinusoidal input for 10 minutes before predicted inflammation. Rattay's activating function was calculated to evaluate the magnetic stimulation effect of external fields on target neurons. Combined with the frequency response analysis, magnitude and spatial effects of the generated potential is established. As a result, each microcoil requires a 400- [Formula: see text]-wide area for each independent stimulation channel, which is 84% narrower than a commercial cochlear array channel, thereby suggesting greater spatial selectivity.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/fisiologia , Nervo Coclear/fisiologia , Estimulação Elétrica , Eletrodos Implantados , Humanos
11.
Nat Commun ; 13(1): 90, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013248

RESUMO

Training in working memory tasks is associated with lasting changes in prefrontal cortical activity. To assess the neural activity changes induced by training, we recorded single units, multi-unit activity (MUA) and local field potentials (LFP) with chronic electrode arrays implanted in the prefrontal cortex of two monkeys, throughout the period they were trained to perform cognitive tasks. Mastering different task phases was associated with distinct changes in neural activity, which included recruitment of larger numbers of neurons, increases or decreases of their firing rate, changes in the correlation structure between neurons, and redistribution of power across LFP frequency bands. In every training phase, changes induced by the actively learned task were also observed in a control task, which remained the same across the training period. Our results reveal how learning to perform cognitive tasks induces plasticity of prefrontal cortical activity, and how activity changes may generalize between tasks.


Assuntos
Potenciais de Ação/fisiologia , Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Eletrodos Implantados , Macaca mulatta , Masculino , Neurônios/citologia , Córtex Pré-Frontal/anatomia & histologia , Técnicas Estereotáxicas
12.
STAR Protoc ; 3(1): 101136, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35112086

RESUMO

We present an experimental protocol to record neuronal activity during intermittent stimulation of nucleus basalis (NB), as macaque monkeys perform cognitive tasks. This protocol includes implantation of electrodes and generator devices to deliver electrical stimulation to NB using multiple approaches in monkeys. Direct stimulation of NB avoids peripheral cholinergic side effects, optimizes timing, and activates non-cholinergic projection neurons. We describe electrode preparation, surgery, and implantation for direct evaluation of how stimulation affects monkeys' behavior and neuronal activity. For complete details on the use and execution of this profile, please refer to Qi et al. (2021).


Assuntos
Núcleo Basal de Meynert , Macaca , Animais , Núcleo Basal de Meynert/fisiologia , Estimulação Elétrica , Haplorrinos , Neurônios/fisiologia
13.
J Neurophysiol ; 106(5): 2180-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795623

RESUMO

The prefrontal cortex, a cortical area essential for working memory and higher cognitive functions, is modulated by a number of neurotransmitter systems, including acetylcholine; however, the impact of cholinergic transmission on prefrontal activity is not well understood. We relied on systemic administration of a muscarinic receptor antagonist, scopolamine, to investigate the role of acetylcholine on primate prefrontal neuronal activity during execution of working memory tasks and recorded neuronal activity with chronic electrode arrays and single electrodes. Our results indicated a dose-dependent decrease in behavioral performance after scopolamine administration in all the working memory tasks we tested. The effect could not be accounted for by deficits in visual processing, eye movement responses, or attention, because the animals performed a visually guided saccade task virtually error free, and errors to distracting stimuli were not increased. Performance degradation under scopolamine was accompanied by decreased firing rate of the same cortical sites during the delay period of the task and decreased selectivity for the spatial location of the stimuli. These results demonstrate that muscarinic blockade impairs performance in working memory tasks and prefrontal activity mediating working memory.


Assuntos
Acetilcolina/fisiologia , Neurônios Colinérgicos/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Eletrodos Implantados , Eletrofisiologia/métodos , Macaca mulatta , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Escopolamina/farmacologia , Percepção Espacial/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
14.
J Alzheimers Dis ; 83(2): 491-503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334401

RESUMO

Memory and cognitive impairment as sequelae of neurodegeneration in Alzheimer's disease and age-related dementia are major health issues with increasing social and economic burden. Deep brain stimulation (DBS) has emerged as a potential treatment to slow or halt progression of the disease state. The selection of stimulation target is critical, and structures that have been targeted for memory and cognitive enhancement include the Papez circuit, structures projecting to the frontal lobe such as the ventral internal capsule, and the cholinergic forebrain. Recent human clinical and animal model results imply that DBS of the nucleus basalis of Meynert can induce a therapeutic modulation of neuronal activity. Benefits include enhanced activity across the cortical mantle, and potential for amelioration of neuropathological mechanisms associated with Alzheimer's disease. The choice of stimulation parameters is also critical. High-frequency, continuous stimulation is used for movement disorders as a way of inhibiting their output; however, no overexcitation has been hypothesized in Alzheimer's disease and lower stimulation frequency or intermittent patterns of stimulation (periods of stimulation interleaved with periods of no stimulation) are likely to be more effective for stimulation of the cholinergic forebrain. Efficacy and long-term tolerance in human patients remain open questions, though the cumulative experience gained by DBS for movement disorders provides assurance for the safety of the procedure.


Assuntos
Colinérgicos , Transtornos Cognitivos/terapia , Estimulação Encefálica Profunda , Doença de Alzheimer/patologia , Animais , Núcleo Basal de Meynert/fisiologia , Humanos , Prosencéfalo/fisiologia
15.
Neuropharmacology ; 187: 108489, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561449

RESUMO

Rodent models have facilitated major discoveries in neurobiology, however, the low success rate of novel medications in clinical trials have led to questions about their translational value in neuropsychiatric drug development research. For age-related disorders of cognition such as Alzheimer' disease (AD) there is interest in moving beyond transgenic amyloid-ß and/or tau-expressing rodent models and focusing more on natural aging and dissociating "healthy" from "pathological" aging to identify new therapeutic targets and treatments. In complex disorders such as AD, it can also be argued that animals with closer neurobiology to humans (e.g., nonhuman primates) should be employed more often particularly in the later phases of drug development. The purpose of the work described here was to evaluate the cognitive capabilities of rhesus monkeys across a wide range of ages in different delayed response tasks, a computerized delayed match to sample (DMTS) task and a manual delayed match to position (DMTP) task. Based on specific performance criteria and comparisons to younger subjects, the older subjects were generally less proficient, however, some performed as well as young subjects, while other aged subjects were markedly impaired. Accordingly, the older subjects could be categorized as aged "cognitively-unimpaired" or aged "cognitively-impaired" with a third group (aged-other) falling in between. Finally, as a proof of principle, we demonstrated using the DMTP task that aged cognitively-impaired monkeys are sensitive to the pro-cognitive effects of a nicotinic acetylcholine receptor (nAChR) partial agonist, encenicline, suggesting that nAChR ligands remain viable as potential treatments for age-related disorders of cognition.


Assuntos
Envelhecimento/psicologia , Cognição/fisiologia , Disfunção Cognitiva/fisiopatologia , Memória de Curto Prazo/fisiologia , Animais , Cognição/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Macaca mulatta , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Nootrópicos/farmacologia , Quinuclidinas/farmacologia , Tiofenos/farmacologia
16.
Cell Rep ; 36(5): 109469, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348147

RESUMO

Acetylcholine plays a critical role in the neocortex. Cholinergic agonists and acetylcholinesterase inhibitors can enhance cognitive functioning, as does intermittent electrical stimulation of the cortical source of acetylcholine, the nucleus basalis (NB) of Meynert. Here we show in two male monkeys how NB stimulation affects working memory and alters its neural code. NB stimulation increases dorsolateral prefrontal activity during the delay period of spatial working memory tasks and broadens selectivity for stimuli but does not strengthen phasic responses to each neuron's optimal visual stimulus. Paradoxically, despite this decrease in neuronal selectivity, performance improves in many task conditions, likely indicating increased delay period stability. Performance under NB stimulation does decline if distractors similar to the target are presented, consistent with reduced prefrontal selectivity. Our results indicate that stimulation of the cholinergic forebrain increases prefrontal neural activity, and this neuromodulatory tone can improve cognitive performance, subject to a stability-accuracy tradeoff.


Assuntos
Núcleo Basal de Meynert/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Estimulação Elétrica , Macaca mulatta , Masculino , Neurônios/fisiologia , Análise e Desempenho de Tarefas
17.
Neuron ; 52(2): 371-81, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17046698

RESUMO

We tested the involvement of cognition in adult experience-dependent neuroplasticity using primate cortical implants. In a prior study, learning an operant sensory discrimination increased cortical excitability and target selectivity. Here, the prior task was separated into three behavioral phases. First, naive animals were exposed to stimulus-reward pairings from the prior study. These yoked animals did not have to discriminate to be rewarded and did not learn the discrimination. The plasticity observed in the prior study did not occur. Second, the animals were classically conditioned to discriminate the same stimuli in a simplified format. Learning was accompanied by increased sensory response strength and an increased range of sensory inputs eliciting responses. The third study recreated the original operant discrimination, and selectivity for task targets increased. These studies demonstrate that cognitive association between sensory stimuli and reinforcers accompanies adult experience-dependent cortical plasticity and suggest that selectivity in representation and action are linked.


Assuntos
Córtex Auditivo/fisiologia , Cognição/fisiologia , Condicionamento Psicológico/fisiologia , Plasticidade Neuronal/fisiologia , Recompensa , Sensação/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Fatores Etários , Envelhecimento/fisiologia , Animais , Aotus trivirgatus , Percepção Auditiva/fisiologia , Comportamento Animal/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Testes Neuropsicológicos , Reforço Psicológico
18.
Ann Neurol ; 66(2): 146-54, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19743446

RESUMO

OBJECTIVE: One approach to the treatment of focal hand dystonia (FHD) is via sensory-based training regimes. It is known that FHD patients demonstrate a reduced distance between the representations of digits 1 and 5 and also digits 2 and 5 in primary somatosensory cortex. However, we lack information on the spatial relationships among digits, such as reduced inter-digit spacing or shifts of representations within the cortical areas, and whether aberrations are specific to symptomatic digits. Our aim was to characterize the spatial relationships among individual digits to determine the types of aberrations that exist and whether these are specific to symptomatic digits only. METHODS: Using high-resolution fMRI over a limited volume and surface-based mapping techniques, the cortical representations of all digits of the dystonia-affected hand within the sub-regions of the postcentral gyrus were mapped in patients with task-specific Writer's cramp (WC). RESULTS: In area 3b, digits directly involved in writing (D1, D2 and D3) show reduced inter-digit separation, reversals, and overlapping activation. The thumb representation occupies territory normally occupied by digit 2 in controls. Asymptomatic digits 4 and 5 preserve their inter-digit separation yet shift towards the D1/D2/D3 cluster, suggesting that reduced spacing, not simply digit shifts, are associated with dystonia symptoms. Area 3a was less responsive to sensory input in WC patients providing evidence of reduced afferent drive or top-down modulation to this sub-region. INTERPRETATION: Therapeutic regimes aimed at facilitating inter-digit separation of digits 1, 2 and 3 may promote beneficial plasticity in WC patients.


Assuntos
Distúrbios Distônicos/fisiopatologia , Dedos , Córtex Somatossensorial/fisiopatologia , Adulto , Análise de Variância , Distúrbios Distônicos/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal , Córtex Somatossensorial/patologia , Redação
19.
Neuropharmacology ; 155: 65-75, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108108

RESUMO

Atomoxetine is a norepinephrine reuptake inhibitor and FDA-approved treatment for attention deficit/hyperactivity disorder (ADHD) in children, adolescents, and adults. While there is some evidence that atomoxetine may improve additional domains of cognition beyond attention in both young adults and aged individuals, this subject has not been extensively investigated. Here, we evaluated atomoxetine (in low mg/kg doses) in a variable stimulus duration (vSD) and a variable intertrial interval (vITI) version of the five choice-serial reaction time task (5C-SRTT), and an eight-arm radial arm maze (RAM) procedure in young-adult rats. The compound was further evaluated (in µg/kg-low mg/kg doses) along with nicotine (as a reference compound) and the Alzheimer's disease treatment donepezil in a distractor version of a delayed match to sample task (DMTS-D) in aged monkeys (mean age = 21.8 years). Atomoxetine (depending on the dose) improved accuracy (sustained attention) as well as behaviors related to impulsivity, compulsivity and cognitive inflexibility in both the vSD and vITI tasks and it improved spatial reference memory in the RAM. In the DMTS-D task, both nicotine and atomoxetine, but not donepezil attenuated the effects of the distractor on accuracy at short delays (non-spatial working/short term memory). However, combining sub-effective doses of atomoxetine and donepezil did enhance DMTS-D accuracy indicating the potential of using atomoxetine as an adjunctive treatment with donepezil. Collectively, these animal studies support the further evaluation of atomoxetine as a repurposed drug for younger adults as well older individuals who suffer from deficits in attention, memory and other components of executive function.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Envelhecimento/efeitos dos fármacos , Cloridrato de Atomoxetina/farmacologia , Função Executiva/efeitos dos fármacos , Memória/efeitos dos fármacos , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Função Executiva/fisiologia , Feminino , Macaca mulatta , Masculino , Memória/fisiologia , Distribuição Aleatória , Ratos , Ratos Long-Evans , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia
20.
Neuropharmacology ; 137: 202-210, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29704983

RESUMO

Sustained attention is essential in important behaviors in daily life. Many neuropsychiatric disorders are characterized by a compromised ability to sustain attention, making this cognitive domain an important therapeutic target. In this study, we tested a novel method of improving sustained attention. Monkeys were engaged in a continuous performance task (CPT) while the nucleus basalis of Meynert (NB), the main source of cholinergic innervation of the neocortex, was stimulated. Intermittent NB stimulation improved the animals' performance by increasing the hit rate and decreasing the false alarm rate. Administration of the cholinesterase inhibitor donepezil or the muscarinic antagonist scopolamine alone impaired performance, whereas the nicotinic antagonist mecamylamine alone improved performance. Applying NB stimulation while mecamylamine or donepezil were administered impaired CPT performance. Methylphenidate, a monoaminergic psychostimulant, was applied in conjunction with intermittent stimulation as a negative control, as it does not directly modulate cholinergic output. Methylphenidate also improved performance, and it produced further improvement when combined with NB stimulation. The additive effect of the combination suggested NB stimulation altered behavior independently from methylphenidate effects. We conclude that basal forebrain projections contribute to sustained attention, and that intermittent NB stimulation is an effective way of improving performance.


Assuntos
Atenção/fisiologia , Núcleo Basal de Meynert/fisiologia , Animais , Atenção/efeitos dos fármacos , Núcleo Basal de Meynert/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Inibidores da Colinesterase/farmacologia , Estimulação Encefálica Profunda , Donepezila/farmacologia , Macaca mulatta , Masculino , Mecamilamina/farmacologia , Metilfenidato/farmacologia , Antagonistas Muscarínicos/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Antagonistas Nicotínicos/farmacologia , Escopolamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA