Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Therm Biol ; 110: 103342, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462853

RESUMO

Sea turtles generally lay several clutches of eggs in a single nesting season. While a negative correlation between water temperatures and the time required between constitutive nesting events (termed the internesting interval) has been previously reported in loggerhead Caretta caretta and green turtles Chelonia mydas, it is not understood whether this relationship remains constant across other sea turtle species. Here, we expanded upon these previous studies on loggerhead and green turtles by using larger sample sizes and including data from species with a wider range of body-sizes; specifically: hawksbill Eretmochelys imbricata, leatherback Dermochelys coriacea, and olive ridley turtles Lepidochelys olivacea. In total, we compiled temperature data from biologgers deployed over internesting intervals on 23 loggerhead, 22 green, 7 hawksbill, 26 leatherback and 11 olive ridley turtles from nesting sites in 8 different countries. The relationship between the duration of the internesting interval and water temperatures in green and loggerhead turtles were statistically similar yet it differed between all other turtle species. Specifically, hawksbill turtles had much longer internesting intervals than green or loggerhead turtles even after controlling for temperature. In addition, both olive ridley and leatherback turtles exhibited thermal independence of internesting intervals presumably due to the large body-size of leatherback turtles and the unique capacity of ridley turtles to delay oviposition. The observed interspecific differences in the relationship between the length of the internesting interval and water temperatures indicate the complex and variable responses that each sea turtle species may exhibit due to environmental fluctuations and climate change.


Assuntos
Tartarugas , Feminino , Animais , Temperatura , Água , Mudança Climática , Tamanho Corporal
2.
Mar Pollut Bull ; 180: 113767, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35605373

RESUMO

We aimed to describe how debris originated from coastal cities and fisheries circulates and accumulates along the Argentine continental shelf and its potential interaction with southern giant petrels (SGP, Macronectes giganteus). We used tracking data of 31 SGPs (adults and juveniles) from Patagonian colonies. Lagrangian simulations of particles were released from coastal cities and fisheries. Oceanographic features together with plastic input generated a corridor of debris through the Argentine shelf with areas of high debris accumulation, exposing SGP to plastic consumption. During chick provisioning trips 93.9% of petrel's locations overlapped with areas of plastic accumulation. Although early developmental stages were more exposed to particles from cities, the exposure of petrels (all classes) to debris from fisheries was 10% higher than from cities. Measures to reduce debris from fisheries, would reduce plastic ingestion by giant petrels. Proper management of open sky dumpsters would reduce plastic consumption by chicks and juveniles.


Assuntos
Monitoramento Ambiental , Plásticos , Animais , Aves , Poluição Ambiental , Pesqueiros , Resíduos/análise
3.
Front Physiol ; 12: 678555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539425

RESUMO

Sea turtles, like other air-breathing diving vertebrates, commonly experience significant gas embolism (GE) when incidentally caught at depth in fishing gear and brought to the surface. To better understand why sea turtles develop GE, we built a mathematical model to estimate partial pressures of N2 (PN2), O2 (PO2), and CO2 (PCO2) in the major body-compartments of diving loggerheads (Caretta caretta), leatherbacks (Dermochelys coriacea), and green turtles (Chelonia mydas). This model was adapted from a published model for estimating gas dynamics in marine mammals and penguins. To parameterize the sea turtle model, we used values gleaned from previously published literature and 22 necropsies. Next, we applied this model to data collected from free-roaming individuals of the three study species. Finally, we varied body-condition and cardiac output within the model to see how these factors affected the risk of GE. Our model suggests that cardiac output likely plays a significant role in the modulation of GE, especially in the deeper diving leatherback turtles. This baseline model also indicates that even during routine diving behavior, sea turtles are at high risk of GE. This likely means that turtles have additional behavioral, anatomical, and/or physiologic adaptions that serve to reduce the probability of GE but were not incorporated in this model. Identifying these adaptations and incorporating them into future iterations of this model will further reveal the factors driving GE in sea turtles.

4.
Curr Biol ; 29(1): R12-R13, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30620906

RESUMO

Magellanic penguins (Spheniscus magellanicus) have been reported to become stranded along the coasts of northern Argentina, Uruguay and southern Brazil during the austral winter [1-3]. This location is more than a thousand kilometers distant from their northernmost breeding colony in northern Patagonia. Curiously, females typically outnumber males at stranding sites (approximately three females per male) [2]. To date, no conspicuous sex differences have been reported in their migratory movements [3], although records are lacking during the peak stranding season. Consequently, the reason(s) for the female-biased stranding remain unknown, despite the growing necessity for understanding their behavior outside the breeding season [3]. We recorded at-sea distributions of Magellanic penguins throughout the non-breeding period using animal-borne data loggers and found that females reached more northern areas than males and did not dive as deep during winter (Figure 1). Such sexual differences in spatial domains might be driven by mechanisms related to sexual size dimorphism, such as the avoidance of intraspecific competition for food resources [4], differences in thermal habitat preference [5] or differences in the ability to withstand the northward-flowing ocean circulation [6]. Individual penguins that winter in northern areas are likely to be at greater risk of natural [7] and anthropogenic threats [8], and probably more so in females, as more females than males tend to frequent areas closer to the sites where penguins strand. Our results highlight the importance of understanding the spatial domains of each sex throughout the annual cycle that are associated with different mortality risks.


Assuntos
Distribuição Animal , Comportamento Alimentar , Spheniscidae/fisiologia , Migração Animal , Animais , Feminino , Masculino , Estações do Ano , Fatores Sexuais
5.
PLoS One ; 10(2): e0116225, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25646803

RESUMO

To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale.


Assuntos
Migração Animal , Tartarugas , Animais , Cruzamento , Conservação dos Recursos Naturais , Feminino , Masculino , Astronave , Telemetria
6.
Integr Zool ; 8(3): 293-306, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24020468

RESUMO

Using satellite transmitters, we determined the internesting movements, spatial ecology and diving behavior of East Pacific green turtles (Chelonia mydas) nesting on Nombre de Jesús and Zapotillal beaches along the Pacific coast of northwestern Costa Rica. Kernel density analysis indicated that turtles spent most of their time in a particularly small area in the vicinity of the nesting beaches (50% utilization distribution was an area of 3 km(2) ). Minimum daily distance traveled during a 12 day internesting period was 4.6 ± 3.5 km. Dives were short and primarily occupied the upper 10 m of the water column. Turtles spent most of their time resting at the surface and conducting U-dives (ranging from 60 to 81% of the total tracking time involved in those activities). Turtles showed a strong diel pattern, U-dives mainly took place during the day and turtles spent a large amount of time resting at the surface at night. The lack of long-distance movements demonstrated that this area was heavily utilized by turtles during the nesting season and, therefore, was a crucial location for conservation of this highly endangered green turtle population. The unique behavior of these turtles in resting at the surface at night might make them particularly vulnerable to fishing activities near the nesting beaches.


Assuntos
Distribuição Animal/fisiologia , Ritmo Circadiano/fisiologia , Mergulho/fisiologia , Espécies em Perigo de Extinção , Atividade Motora/fisiologia , Comportamento Espacial/fisiologia , Tartarugas/fisiologia , Animais , Conservação dos Recursos Naturais/métodos , Costa Rica , Oceano Pacífico , Telemetria
7.
PLoS One ; 7(5): e37602, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22649544

RESUMO

Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by ∼50-60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes.


Assuntos
Animais Recém-Nascidos/fisiologia , Mudança Climática/mortalidade , El Niño Oscilação Sul , Modelos Teóricos , Reprodução/fisiologia , Tartarugas/fisiologia , Animais , Tamanho da Ninhada/fisiologia , Costa Rica , Umidade , Mortalidade , Óvulo/fisiologia , Oceano Pacífico , Análise de Regressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA