Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 109: 117-126, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681358

RESUMO

BACKGROUND AND OBJECTIVES: There is growing evidence of the contribution of neuroinflammation, and in particular microglia, in the pathogenesis of amyotrophic lateral sclerosis (ALS). TREM2 gene plays a crucial role in shaping microglia in neurodegenerative conditions. To deepen the understanding of TREM2 in ALS and investigate the performance of TREM2 as a biomarker, we profiled TREM2 expression levels in spinal cord, cerebrospinal fluid and blood of patients with sporadic ALS. We also wanted to investigate whether the combined measurement of sTREM2 in fluids could improve the diagnostic yield of total and phosphorylated TDP-43 levels. METHODS: We performed a case-control study to profile overall and transcript-specific TREM2 mRNA levels by RT-qPCR and protein expression levels by Western-blot in postmortem specimens of spinal cord from ALS patients and controls. In parallel, we measured soluble TREM2 (sTREM2) protein levels and full length and phosphorylated TDP-43 (tTDP-43 and pTDP-43) by ELISA in CSF and serum from ALS patients vs healthy controls. Patients were prospectively recruited from an ALS unit of a tertiary hospital and fulfilled El Escorial revised criteria. After bivariate analysis, a logistic regression model was developed to identify adjusted estimates of the association of sTREM2 levels in CSF and serum with ALS status. RESULTS: Overall and transcript-specific TREM2 mRNA were upregulated in the spinal cord of ALS patients (n = 21) compared to controls (n = 19). Similar changes were observed in TREM2 protein levels (p < 0.01) in spinal cord of ALS patients vs healthy controls. We also detected significantly higher sTREM2 levels in CSF (p-value < 0.01) of ALS patients (n = 46) vs controls (n = 46) and serum (p-value < 0.001) of ALS patients (n = 100) vs controls (n = 100). In a logistic regression model, both CSF and serum sTREM2 remained independently associated with ALS status with OR = 3.41 (CI 95 %=1.34-8.66) (p-value < 0.05) and OR = 3.38 (CI 95 %: 1.86-6.16) (p-value < 0.001), respectively. We also observed that pTDP-43 levels in CSF is an independent predictor of ALS (p-value < 0.05). CONCLUSIONS: Our results support the role of TREM2 in ALS pathophysiology and demonstrates that the three TREM2 transcripts are deregulated in ALS in postmortem human specimens of spinal cord. We hypothesise about the possible influence of systemic-peripheral inflammation in the disease. Finally, we conclude that pTDP-43 levels in CSF could be a biomarker of ALS, and sTREM2 measurement in CSF and blood emerge as potential non-invasive biomarker in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Estudos de Casos e Controles , Biomarcadores/líquido cefalorraquidiano , Inflamação , Proteínas de Ligação a DNA , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901741

RESUMO

Alzheimer's disease (AD) is the most common cause of age-related dementia. Amyloid precursor protein (APP) is the precursor of Aß peptides, and its role in AD has been widely investigated. Recently, it has been reported that a circular RNA (circRNA) originated from APP gene can serve as a template for Aß synthesis, postulating it as an alternative pathway for the Aß biogenesis. Moreover, circRNAs play important roles in brain development and in neurological diseases. Therefore, our aim was to study the expression of a circAPP (hsa_circ_0007556) and its linear cognate in AD human entorhinal cortex, a brain region most vulnerable to AD pathology. First, we confirmed the presence of circAPP (hsa_circ_0007556) in human entorhinal cortex samples using RT-PCR and Sanger sequencing of PCR products. Next, a 0.49-fold decrease in circAPP (hsa_circ_0007556) levels was observed in entorhinal cortex of AD cases compared to controls (p-value < 0.05) by qPCR. In contrast, APP mRNA expression did not show changes in the entorhinal cortex between AD cases and controls (Fold-change = 1.06; p-value = 0.81). A negative correlation was found between Aß deposits and circAPP (hsa_circ_0007556) and APP expression levels (Rho Spearman = -0.56, p-value < 0.001 and Rho Spearman = -0.44, p-values < 0.001, respectively). Finally, by using bioinformatics tools, 17 miRNAs were predicted to bind circAPP (hsa_circ_0007556), and the functional analysis predicted that they were involved in some pathways, such as the Wnt-signaling pathway (p = 3.32 × 10-6). Long-term potentiation (p = 2.86 × 10-5), among others, is known to be altered in AD. To sum up, we show that circAPP (hsa_circ_0007556) is deregulated in the entorhinal cortex of AD patients. These results add to the notion that circAPP (hsa_circ_0007556) could be playing a role in the pathogenesis of AD disease.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide , Encéfalo , MicroRNAs/genética , RNA Circular/genética
3.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887031

RESUMO

Genetic variants in TREM2, a microglia-related gene, are well-known risk factors for Alzheimer's disease (AD). Here, we report that TREM2 originates from circular RNAs (circRNAs), a novel class of non-coding RNAs characterized by a covalent and stable closed-loop structure. First, divergent primers were designed to amplify circRNAs by RT-PCR, which were further assessed by Sanger sequencing. Then, additional primer sets were used to confirm back-splicing junctions. In addition, HMC3 cells were used to assess the microglial expression of circTREM2s. Three candidate circTREM2s were identified in control and AD human entorhinal samples. One of the circRNAs, circTREM2_1, was consistently amplified by all divergent primer sets in control and AD entorhinal cortex samples as well as in HMC3 cells. In AD cases, a moderate negative correlation (r = -0.434) was found between the global average area of Aß deposits in the entorhinal cortex and circTREM2_1 expression level. In addition, by bioinformatics tools, a total of 16 miRNAs were predicted to join with circTREM2s. Finally, TREM2 mRNA corresponding to four isoforms was profiled by RT-qPCR. TREM2 mRNA levels were found elevated in entorhinal samples of AD patients with low or intermediate ABC scores compared to controls. To sum up, a novel circRNA derived from the TREM2 gene, circTREM2_1, has been identified in the human entorhinal cortex and TREM2 mRNA expression has been detected to increase in AD compared to controls. Unraveling the molecular genetics of the TREM2 gene may help to better know the innate immune response in AD.


Assuntos
Doença de Alzheimer , Córtex Entorrinal , Glicoproteínas de Membrana , RNA Circular , RNA Mensageiro , Receptores Imunológicos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Córtex Entorrinal/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
4.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502114

RESUMO

The HOMER1 gene is involved in synaptic plasticity, learning and memory. Recent studies show that circular RNA derived from HOMER1 (circHOMER1) expression is altered in some Alzheimer's disease (AD) brain regions. In addition, HOMER1 messenger (mRNA) levels have been associated with ß-Amyloid (Aß) deposits in brain cortical regions. Our aim was to measure the expression levels of HOMER1 circRNAs and their linear forms in the human AD entorhinal cortex. First, we showed downregulation of HOMER1B/C and HOMER1A mRNA and hsa_circ_0006916 and hsa_circ_0073127 levels in AD female cases compared to controls by RT-qPCR. A positive correlation was observed between HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073128 with HOMER1B/C protein only in females. Global average area of Aß deposits in entorhinal cortex samples was negatively correlated with HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073127 in both genders. Furthermore, no differences in DNA methylation were found in two regions of HOMER1 promoter between AD cases and controls. To sum up, we demonstrate that linear and circular RNA variants of HOMER1 are downregulated in the entorhinal cortex of female patients with AD. These results add to the notion that HOMER1 and its circular forms could be playing a female-specific role in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/genética , Córtex Entorrinal/metabolismo , Regulação da Expressão Gênica , Proteínas de Arcabouço Homer/genética , RNA Circular/genética , RNA Mensageiro/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Estudos de Casos e Controles , Regulação para Baixo , Córtex Entorrinal/fisiopatologia , Feminino , Humanos , Masculino , Fatores Sexuais
5.
Mov Disord ; 35(5): 885-890, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031293

RESUMO

BACKGROUND: The role of the microglia-related gene triggering receptor expressed in myeloid cells 2 (TREM2) in primary tauopathies, such as progressive supranuclear palsy (PSP), still remains unclear. OBJECTIVES: The objective of this study was to profile overall and transcript-specific TREM2 expression levels in the substantia nigra (SN) of PSP patients and controls. METHODS: SN samples from neuropathologically confirmed PSP cases (n = 24) and controls (n = 14) were used to measure TREM2 and TREM2-modulating gene Membrane-spanning 4-domains subfamily A member 4A (MS4A4A) mRNA levels by real-time quantitative polymerase chain reaction. Correlation with hyperphosphorylated tau protein burden was assessed. RESULTS: Overall TREM2 and each of the 3 TREM2 transcripts mRNA levels were significantly increased in the SN of PSP cases versus controls. TREM2 mRNA levels positively correlated with hyperphosphorylated tau burden in SN, specifically in neurons. The MS4A4A gene was also upregulated in PSP patients versus controls. CONCLUSIONS: These results add evidence to the involvement of microglia in the disease process of PSP. These findings support the idea that different tauopathies may share common patterns of deregulation in innate immune molecular pathways. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Glicoproteínas de Membrana/genética , Microglia , Células Mieloides , Receptores Imunológicos/genética , Substância Negra , Paralisia Supranuclear Progressiva/genética
6.
Int J Mol Sci ; 20(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781626

RESUMO

Lamins are fibrillary proteins that are crucial in maintaining nuclear shape and function. Recently, B-type lamin dysfunction has been linked to tauopathies. However, the role of A-type lamin in neurodegeneration is still obscure. Here, we examined A-type and B-type lamin expression levels by RT-qPCR in Alzheimer's disease (AD) patients and controls in the hippocampus, the core of tau pathology in the brain. LMNA, LMNB1, and LMNB2 genes showed moderate mRNA levels in the human hippocampus with highest expression for the LMNA gene. Moreover, LMNA mRNA levels were increased at the late stage of AD (1.8-fold increase; p-value < 0.05). In addition, a moderate positive correlation was found between age and LMNA mRNA levels (Pearson's r = 0.581, p-value = 0.018) within the control hippocampal samples that was not present in the hippocampal samples affected by AD. A-type and B-type lamin genes are expressed in the human hippocampus at the transcript level. LMNA mRNA levels are up-regulated in the hippocampal tissue in late stages of AD. The effect of age on increasing LMNA expression levels in control samples seems to be disrupted by the development of AD pathology.


Assuntos
Doença de Alzheimer/genética , Regulação da Expressão Gênica , Hipocampo/metabolismo , Lamina Tipo A/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Lamina Tipo A/metabolismo , Masculino , Pessoa de Meia-Idade , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas tau/metabolismo
7.
Rep Pract Oncol Radiother ; 24(2): 221-226, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858765

RESUMO

AIM: To evaluate the radiopotentiation of enzalutamide in human prostate cancer cells. BACKGROUND: While radiotherapy is the first line of treatment for prostate cancer, androgen blockade therapies are demonstrating significant survival benefit as monotherapies. As androgen blockade can cause cell death by apoptosis, it is likely that androgen blockade will potentiate the cytotoxic activities of radiotherapy. MATERIALS AND METHODS: Here, we tested the potential synergistic effects of these two treatments over two human metastatic prostate cancer cells by real-time cell analysis (RTCA), androgen-sensitive LNCaP cells (Lymph Node Carcinoma of the Prostate) and androgen-independent PC-3. Both cell lines were highly resistant to high doses of radiotherapy. RESULTS: A pre-treatment of LNCaP cells with IC50 concentrations of enzalutamide significantly sensitized them to radiotherapy through enhanced apoptosis. In contrast, enzalutamide resistant PC-3 cells were not sensitized to radiotherapy by androgen blockade. CONCLUSIONS: These results provide evidence that the enzalutamide/radiotherapy combination could maximize therapeutic responses in patients with enzalutamide-sensitive prostate cancer.

8.
Proteomics ; 16(2): 367-78, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26403437

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that are defined by their myeloid origin, immature state, and ability to potently suppress T-cell responses. They regulate immune responses and the population significantly increases in the tumor microenvironment of patients with glioma and other malignant tumors. For their study, MDSCs are usually isolated from the spleen or directly of tumors from a large number of tumor-bearing mice although promising ex vivo differentiated MDSC production systems have been recently developed. During the last years, proteomics has emerged as a powerful approach to analyze MDSCs proteomes using shotgun-based mass spectrometry (MS), providing functional information about cellular homeostasis and metabolic state at a global level. Here, we will revise recent proteome profiling studies performed in MDSCs from different origins. Moreover, we will perform an integrative functional analysis of the protein compilation derived from these large-scale proteomic studies in order to obtain a comprehensive view of MDSCs biology. Finally, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and post-translational modifications (PTMs) during the differentiation process of MDSCs that will greatly boost the identification of novel MDSC-specific therapeutic targets to apply in cancer immunotherapy.


Assuntos
Células Mieloides/metabolismo , Proteoma/metabolismo , Animais , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Proteômica , Microambiente Tumoral
9.
Pathol Int ; 65(9): 476-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26222671

RESUMO

Cervical cancer is the third most common cancer in women worldwide. The hypermethylation of P16, TSLC-1 and TSP-1 genes was analyzed in squamous cell carcinomas (SCC), cervical intraepithelial lesions (CIN) and adenocarcinomas (ADC) of the uterine cervix (total 181 lesions). Additionally human papillomavirus (HPV) type, EPB41L3, RASSF1 and RASSF2 hypermethylation were tested in ADC and the results were compared with those obtained previously by our group in SCC. P16, TSLC-1 and TSP-1 hypermethylation was more frequent in SCCs than in CINs. These percentages and the corresponding ones for EPB41L3, RASSF1 and RASSF2 genes were also higher in SCCs than in ADCs, except for P16. The presence of HPV in ADCs was lower than reported previously in SCC and CIN. Patients with RASSF1A hypermethylation showed significantly longer disease-free survival (P = 0.015) and overall survival periods (P = 0.009) in ADC patients. To our knowledge, this is the first description of the EPB41L3 and RASSF2 hypermethylation in ADCs. These results suggest that the involvement of DNA hypermethylation in cervical cancer varies depending on the histological type, which might contribute to explaining the different prognosis of patients with these types of tumors.


Assuntos
Adenocarcinoma/genética , Alphapapillomavirus/classificação , Carcinoma de Células Escamosas/genética , Infecções por Papillomavirus/genética , Displasia do Colo do Útero/genética , Neoplasias do Colo do Útero/genética , Adenocarcinoma/patologia , Adulto , Idoso , Alphapapillomavirus/genética , Alphapapillomavirus/isolamento & purificação , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Carcinoma de Células Escamosas/patologia , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Colo do Útero/patologia , Inibidor p16 de Quinase Dependente de Ciclina , Metilação de DNA , Intervalo Livre de Doença , Feminino , Testes de DNA para Papilomavírus Humano , Humanos , Imunoglobulinas/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Infecções por Papillomavirus/patologia , Prognóstico , Proteínas Supressoras de Tumor/genética , Neoplasias do Colo do Útero/patologia , Displasia do Colo do Útero/patologia
10.
Biomedicines ; 11(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38001994

RESUMO

BACKGROUND: Neuroinflammation, and specifically microglia, plays an important but not-yet well-understood role in the pathophysiology of amyotrophic lateral sclerosis (ALS), constituting a potential therapeutic target for the disease. Recent studies have described the involvement of different microglial transcriptional patterns throughout neurodegenerative processes, identifying a new state of microglia: disease-associated microglia (DAM). The aim of this study is to investigate expression patterns of microglial-related genes in ALS spinal cord. METHODS: We analyzed mRNA expression levels via RT-qPCR of several microglia-related genes in their homeostatic and DAM state in postmortem tissue (anterior horn of the spinal cord) from 20 subjects with ALS-TDP43 and 19 controls donors from the Navarrabiomed Biobank. RESULTS: The expression levels of TREM2, MS4A, CD33, APOE and TYROBP were found to be elevated in the spinal cord from ALS subjects versus controls (p-value < 0.05). However, no statistically significant gene expression differences were observed for TMEM119, SPP1 and LPL. CONCLUSIONS: This study suggests that a DAM-mediated inflammatory response is present in ALS, and TREM2 plays a significant role in immune function of microglia. It also supports the role of C33 and MS4A in the physiopathology of ALS.

11.
Cells ; 12(23)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067107

RESUMO

In recent years, new DNA methylation variants have been reported in genes biologically relevant to Alzheimer's disease (AD) in human brain tissue. However, this AD-specific epigenetic information remains brain-locked and unreachable during patients' lifetimes. In a previous methylome performed in the hippocampus of 26 AD patients and 12 controls, we found higher methylation levels in AD patients in the promoter region of PRLHR, a gene involved in energy balance regulation. Our aim was to further characterize PRLHR's role in AD and to evaluate if the liquid biopsy technique would provide life access to this brain information in a non-invasive way. First, we extended the methylation mapping of PRLHR and validated previous methylome results via bisulfite cloning sequencing. Next, we observed a positive correlation between PRLHR methylation levels and AD-related neuropathological changes and a decreased expression of PRLHR in AD hippocampus. Then, we managed to replicate the hippocampal methylation differences in plasma cfDNA from an additional cohort of 35 AD patients and 35 controls. The isolation of cfDNA from the plasma of AD patients may constitute a source of potential epigenetic biomarkers to aid AD clinical management.


Assuntos
Doença de Alzheimer , Ácidos Nucleicos Livres , Epigênese Genética , Biópsia Líquida , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Metilação de DNA/genética
12.
Neurology ; 101(23): e2434-e2447, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37827850

RESUMO

BACKGROUND AND OBJECTIVES: There is an urgent need to identify novel noninvasive biomarkers for Alzheimer disease (AD) diagnosis. Recent advances in blood-based measurements of phosphorylated tau (pTau) species are promising but still insufficient to address clinical needs. Epigenetics has been shown to be helpful to better understand AD pathogenesis. Epigenetic biomarkers have been successfully implemented in other medical disciplines, such as oncology. The objective of this study was to explore the diagnostic accuracy of a blood-based DNA methylation marker panel as a noninvasive tool to identify patients with late-onset Alzheimer compared with age-matched controls. METHODS: A case-control study was performed. Blood DNA methylation levels at 46 cytosine-guanine sites (21 genes selected after a comprehensive literature search) were measured by bisulfite pyrosequencing in patients with "probable AD dementia" following National Institute on Aging and the Alzheimer's Association guidelines (2011) and age-matched and sex-matched controls recruited at Neurology Department-University Hospital of Navarre, Spain, selected by convenience sampling. Plasma pTau181 levels were determined by Simoa technology. Multivariable logistic regression analysis was performed to explore the optimal model to discriminate patients with AD from controls. Furthermore, we performed a stratified analysis by sex. RESULTS: The final study cohort consisted of 80 patients with AD (age: median [interquartile range] 79 [11] years; 58.8% female) and 100 cognitively healthy controls (age 77 [10] years; 58% female). A panel including DNA methylation levels at NXN, ABCA7, and HOXA3 genes and plasma pTau181 significantly improved (area under the receiver operating characteristic curve 0.93, 95% CI 0.89-0.97) the diagnostic performance of a single pTau181-based model, adjusted for age, sex, and APOE ɛ4 genotype. The sensitivity and specificity of this panel were 83.30% and 90.00%, respectively. After sex-stratified analysis, HOXA3 DNA methylation levels showed consistent association with AD. DISCUSSION: These results highlight the potential translational value of blood-based DNA methylation biomarkers for noninvasive diagnosis of AD. REGISTRATION INFORMATION: Research Ethics Committee of the University Hospital of Navarre (PI17/02218).


Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Metilação de DNA/genética , Estudos de Casos e Controles , Biomarcadores , Genótipo , Proteínas tau/genética , Peptídeos beta-Amiloides/genética
13.
Cells ; 11(7)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406633

RESUMO

In view of the proven link between adult hippocampal neurogenesis (AHN) and learning and memory impairment, we generated a straightforward adult neurogenesis in vitro model to recapitulate DNA methylation marks in the context of Alzheimer's disease (AD). Neural progenitor cells (NPCs) were differentiated for 29 days and Aß peptide 1-42 was added. mRNA expression of Neuronal Differentiation 1 (NEUROD1), Neural Cell Adhesion Molecule 1 (NCAM1), Tubulin Beta 3 Class III (TUBB3), RNA Binding Fox-1 Homolog 3 (RBFOX3), Calbindin 1 (CALB1), and Glial Fibrillary Acidic Protein (GFAP) was determined by RT-qPCR to characterize the culture and framed within the multistep process of AHN. Hippocampal DNA methylation marks previously identified in Contactin-Associated Protein 1 (CNTNAP1), SEPT5-GP1BB Readthrough (SEPT5-GP1BB), T-Box Transcription Factor 5 (TBX5), and Nucleoredoxin (NXN) genes were profiled by bisulfite pyrosequencing or bisulfite cloning sequencing; mRNA expression was also measured. NXN outlined a peak of DNA methylation overlapping type 3 neuroblasts. Aß-treated NPCs showed transient decreases of mRNA expression for SEPT5-GP1BB and NXN on day 9 or 19 and an increase in DNA methylation on day 29 for NXN. NXN and SEPT5-GP1BB may reflect alterations detected in the brain of AD human patients, broadening our understanding of this disease.


Assuntos
Doença de Alzheimer , Epigênese Genética , Oxirredutases , Adulto , Doença de Alzheimer/genética , Humanos , Neurogênese/genética , Oxirredutases/genética , RNA Mensageiro
14.
Brain Sci ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070012

RESUMO

Adult neurogenesis was one of the most important discoveries of the last century, helping us to better understand brain function. Researchers recently discovered that microglia play an important role in this process. However, various questions remain concerning where, at what stage, and what types of microglia participate. In this review, we demonstrate that certain pools of microglia are determinant cells in different phases of the generation of new neurons. This sheds light on how cells cooperate in order to fine tune brain organization. It also provides us with a better understanding of distinct neuronal pathologies.

15.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832966

RESUMO

Neuroblastoma is the most frequent malignant extracranial solid tumor of infancy. The overall objective of this work consists of determining the presence of alterations in the p53/MDM2/p14ARF signaling pathway in neuroblastoma cell lines and deciphering their possible relationship with resistance to known antineoplastic drugs and to differentiation agents. Firstly, we characterized 10 neuroblastoma cell lines for alterations at the p53/MDM2/p14ARF signaling pathway by analysis of TP53 point mutations, MYCN and MDM2 amplification, and p14ARF methylation, homozygous deletions, and expression. Secondly, we chose SK-N-FI (mutated at TP53) and SK-N-Be(2) (wild-type TP53) cell lines, treated them with chemotherapeutic agents (doxorubicin, etoposide, cisplatin, and melphalan) and with two isomers of retinoic acid (RA): (9-cis and all-trans). Finally, we analyzed the distribution of the cell cycle, the induction of apoptosis, and the expression levels of p53, p21, and Bcl-2 in those two cell lines. P14ARF did not present promoter methylation, homozygous deletions, and protein expression in any of the 10 neuroblastoma cell lines. One TP53 point mutation was detected in the SK-N-FI cell line. MYCN amplification was frequent, while most cell lines did not present MDM2 amplification. Treatment of SK-N-FI and SK-N-Be(2) cells with doxorubicin, etoposide, cisplatin, and melphalan increased apoptosis and blocked the cycle in G2/M, while retinoic acid isomers induced apoptosis and decreased the percentage of cells in S phase in TP53 mutated SK-N-FI cells, but not in TP53 wild-type SK-N-Be(2) cells. Treatment with cisplatin, melphalan, or 9-cis RA decreased p53 expression levels in SK-N-FI cells but not in SK-N-Be (2). The expression of p21 was not modified in either of the two cell lines. Bcl-2 levels were reduced only in SK-N-FI cells after treatment with cisplatin. However, treatments with doxorubicin, etoposide, or 9-cis-RA did not modify the levels of this protein in either of the two cell lines. In conclusion, TP53 mutated SK-N-FI cells respond better to the retinoic isomers than TP53 wild-type SK-N-Be(2) cells. Although these are in vitro results, it seems that deciphering the molecular alterations of the p53/MDM2/p14ARF signaling pathway prior to treating patients of neuroblastoma might be useful for standardizing therapies with the aim of improving survival.

16.
Sci Rep ; 10(1): 4564, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165663

RESUMO

Mindfulness and meditation techniques have proven successful for the reduction of stress and improvement in general health. In addition, meditation is linked to longevity and longer telomere length, a proposed biomarker of human aging. Interestingly, DNA methylation changes have been described at specific subtelomeric regions in long-term meditators compared to controls. However, the molecular basis underlying these beneficial effects of meditation on human health still remains unclear. Here we show that DNA methylation levels, measured by the Infinium HumanMethylation450 BeadChip (Illumina) array, at specific subtelomeric regions containing GPR31 and SERPINB9 genes were associated with telomere length in long-term meditators with a strong statistical trend when correcting for multiple testing. Notably, age showed no association with telomere length in the group of long-term meditators. These results may suggest that long-term meditation could be related to epigenetic mechanisms, in particular gene-specific DNA methylation changes at distinct subtelomeric regions.


Assuntos
Metilação de DNA , Atenção Plena/métodos , Receptores Acoplados a Proteínas G/genética , Serpinas/genética , Telômero/metabolismo , Adulto , Estudos de Casos e Controles , Estudos Transversais , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos
17.
Cell Biosci ; 10: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175077

RESUMO

BACKGROUND: The discovery of novel biomarkers of stroke etiology would be most helpful in management of acute ischemic stroke patients. Recently, circular RNAs (circRNAs) have been proposed as candidate biomarkers of neurological conditions due to its high stability. circRNAs function as sponges, sequestering miRNAs and are involved in most relevant biological functions. Our aim was to identify differentially expressed circRNAs in acute ischemic stroke patients according to stroke etiology. METHODS: A comprehensive expression profile of blood circRNAs was conducted by Arraystar Human circRNA arrays (13,617 probes) on a discovery cohort of 30 stroke patients with different stroke etiologies by TOAST classification. Real-time quantitative PCR (RT-qPCR) was used to validate array results in a cohort of 50 stroke patients. Functional in silico analysis was performed to identify potential interactions with microRNAs (miRNAs) and pathways underlying deregulated circRNAs. RESULTS: A set of 60 circRNAs were found to be upregulated in atherotrombotic versus cardioembolic strokes (fold-change > = 1.5 and p-value ≤ 0.05). Differential expression of hsa_circRNA_102488, originated from UBA52 gene, was replicated in the validation cohort. RNA-binding proteins (RBPs) sites of hsa_circRNA_102488 clustered around AGO2 and FUS proteins. Further functional analysis revealed interactions between deregulated circRNAs and a set of miRNAs involved in stroke-related pathways, such as fatty acid biogenesis or lysine degradation. CONCLUSION: Different stroke subtypes show specific profiles of circRNAs expression. circRNAs may serve as a new source of biomarkers of stroke etiology in acute ischemic stroke patients.

18.
Epigenetics ; 15(10): 1083-1092, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32233750

RESUMO

The discovery of new biomarkers would be very valuable to improve the detection of early Alzheimer's disease (AD). DNA methylation marks may serve as epigenetic biomarkers of early AD. Here we identified epigenetic marks that are present in the human hippocampus from the earliest stages of AD. A previous methylome dataset of the human AD hippocampus was used to select a set of eight differentially methylated positions (DMPs) since early AD stages. Next, bisulphite pyrosequencing was performed in an expanded homogeneous cohort of 18 pure controls and 35 hippocampal samples with neuropathological changes of pure AD. Correlation between DNA methylation levels in DMPs and phospho-tau protein burden assessed by immunohistochemistry in the hippocampus was also determined. We found four DMPs showing higher levels of DNA methylation at early AD stages compared to controls, involving ELOVL2, GIT1/TP53I13 and the histone gene locus at chromosome 6. DNA methylation levels assessed by bisulphite pyrosequencing correlated with phospho-tau protein burden for ELOVL2 and HIST1H3E/HIST1H3 F genes. In this discovery study, a set of four epigenetic marks of early AD stages have been identified in the human hippocampus. It would be worth studying in-depth the specific pathways related to these epigenetic marks. These early alterations in DNA methylation in the AD hippocampus could be regarded as candidate biomarkers to be explored in future translational studies. ABBREVIATIONS: AD: Alzheimer's disease; DMPs: Differentially methylated positions; CSF: Cerebrospinal fluid; ßA42: ß-amyloid 42; PET: positron emission tomography; 5mC: 5-methyl cytosine; CpG: cytosine-guanine dinucleotides; ANK1: ankyrin-1; BIN1: amphiphysin II; p-tau: hyperphosphorylated tau; CERAD: Consortium to Establish A Registry for Alzheimer's Disease; SD: standard deviation; ANOVA: one-way analysis of variance; VLCFAs: very long-chain fatty acids; DHA: docosahexaenoic acid; mTOR: mechanistic target of rapamycin.


Assuntos
Doença de Alzheimer/genética , Metilação de DNA , Epigênese Genética , Hipocampo/metabolismo , Doença de Alzheimer/patologia , Aspartato Aminotransferase Citoplasmática/genética , Elongases de Ácidos Graxos/genética , Hipocampo/patologia , Histonas/genética , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo
19.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764385

RESUMO

Cancer cells acquire resistance to cytotoxic therapies targeting major survival pathways by adapting their metabolism. The AKT pathway is a major regulator of human pancreatic adenocarcinoma progression and a key pharmacological target. The mechanisms of adaptation to long-term silencing of AKT isoforms of human and mouse pancreatic adenocarcinoma cancer cells were studied. Following silencing, cancer cells remained quiescent for long periods of time, after which they recovered proliferative capacities. Adaptation caused profound proteomic changes largely affecting mitochondrial biogenesis, energy metabolism and acquisition of a number of distinct cancer stem cell (CSC) characteristics depending on the AKT isoform that was silenced. The adaptation to AKT1 silencing drove most de-differentiation and acquisition of stemness through C-MYC down-modulation and NANOG upregulation, which were required for survival of adapted CSCs. The changes associated to adaptation sensitized cancer cells to inhibitors targeting regulators of oxidative respiration and mitochondrial biogenesis. In vivo pharmacological co-inhibition of AKT and mitochondrial metabolism effectively controlled pancreatic adenocarcinoma growth in pre-clinical models.

20.
Clin Epigenetics ; 11(1): 91, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217032

RESUMO

BACKGROUND: Drawing the epigenome landscape of Alzheimer's disease (AD) still remains a challenge. To characterize the epigenetic molecular basis of the human hippocampus in AD, we profiled genome-wide DNA methylation levels in hippocampal samples from a cohort of pure AD patients and controls by using the Illumina 450K methylation arrays. RESULTS: Up to 118 AD-related differentially methylated positions (DMPs) were identified in the AD hippocampus, and extended mapping of specific regions was obtained by bisulfite cloning sequencing. AD-related DMPs were significantly correlated with phosphorylated tau burden. Functional analysis highlighted that AD-related DMPs were enriched in poised promoters that were not generally maintained in committed neural progenitor cells, as shown by ChiP-qPCR experiments. Interestingly, AD-related DMPs preferentially involved neurodevelopmental and neurogenesis-related genes. Finally, InterPro ontology analysis revealed enrichment in homeobox-containing transcription factors in the set of AD-related DMPs. CONCLUSIONS: These results suggest that altered DNA methylation in the AD hippocampus occurs at specific regulatory regions crucial for neural differentiation supporting the notion that adult hippocampal neurogenesis may play a role in AD through epigenetic mechanisms.


Assuntos
Doença de Alzheimer/genética , Metilação de DNA , Genes Homeobox , Hipocampo/química , Neurogênese , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Cadáver , Estudos de Casos e Controles , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Regiões Promotoras Genéticas , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA