Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Arthroplasty ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479635

RESUMO

BACKGROUND: Intraprosthetic dissociation (IPD) is a complication unique to dual mobility (DM) implants where the outer polyethylene head dissociates from the inner femoral head. Increasing reports of IPD at the time of closed reduction of large head DM dislocations prompted this biomechanical study evaluating the assembly and dissociation forces of DM heads. METHODS: We tested 17 polyethylene DM heads from 5 vendors. Of the heads, 12 were highly cross-linked polyethylene (4 vendors) and 5 were infused with vitamin E (2 vendors). Heads were between 46 and 47 mm in diameter, accepting a 28 mm-inner ceramic head. Implants were assembled and disassembled using a servohydraulic machine that recorded the forces and torques applied during testing. Dissociation was tested via both axial pull-out and lever-out techniques, where lever-out simulated stem-on-acetabular component impingement. RESULTS: The initial maximum assembly force was significantly different between all vendors (P < .01) and decreased for all implants with subsequent assembly. Vendor 4-E (Link with vitamin E) heads required the highest assembly force (1,831.9 ± 81.95 N), followed by Vendor 3 (Smith & Nephew), Vendor 5 (DePuy Synthes), Vendor 1-E (Zimmer Biomet with vitamin E), Vendor 2 (Stryker), and Vendor 1 (Zimmer Biomet Arcom). Vendor 4-E implants showed the greatest dissociation resistance in both pull-out (2,059.89 N, n = 1) and lever-out (38.95 ± 2.79 Nm) tests. Vendor 1-E implants with vitamin E required higher assembly force, dissociation force, and energy than Vendor 1 heads without vitamin E. CONCLUSIONS: There were notable differences in DM assembly and dissociation forces between implants. Diminishing force was required for assembly with each additional trial across vendors. Vendor 4-E DM heads required the highest assembly and dissociation forces. Vitamin E appeared to increase the assembly and dissociation forces. Based on these results, DM polyethylene heads should not be reimplanted after dissociation, and there may be a role for establishing a minimum dissociation energy standard to minimize IPD risk.

2.
J Neurophysiol ; 129(6): 1389-1399, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37162174

RESUMO

Anticipatory force control underlying dexterous manipulation has historically been understood to rely on visual object properties and on sensorimotor memories associated with previous experiences with similar objects. However, it is becoming increasingly recognized that anticipatory force control also relies on how an object is grasped. Experiments that allow unconstrained grasp contact points when preventing tilting an object with an off-centered mass show trial-to-trial variations in digit position and subsequent scaling of lift forces, all before feedback of object properties becomes available. Here, we manipulated the availability of visual information before reach onset and after grasp contact (with no vision during the reach) to determine the contribution and timing of visual information processing to the scaling of fingertip forces during dexterous manipulation at flexible contact points. Results showed that anticipatory force control was similarly successful, quantified as an appropriate compensatory torque at lift onset that counters the external torque of an object with a left and right center of mass, irrespective of the timing and availability of visual information. However, the way in which anticipatory force control was achieved varied depending on the availability of visual information. Visual information following grasp contact was associated with greater use of an asymmetric thumb and index finger grasp configuration to generate a compensatory torque and digit position variability, together with faster fingertip force scaling and sensorimotor learning. This result supports the hypothesis that visual information at a critical and functionally relevant time point following grasp contact supports variable and swift digit-based force control for dexterous object manipulation.NEW & NOTEWORTHY Humans excel in dexterous object manipulation by precisely coordinating grasp points and fingertip forces, highlighted in scenarios requiring countering object torques in advance, e.g., lifting a teacup without spilling will demand a unique digit force pattern based on the grip configuration at lift onset. Here, we show that visual information following grasp contact, a critical and functionally relevant time point, supports digit position variability and swift anticipatory force control to achieve a dexterous motor goal.


Assuntos
Dedos , Força da Mão , Humanos , Fenômenos Biomecânicos , Polegar , Aprendizagem , Desempenho Psicomotor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA