Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 627(8003): 276-277, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480961
2.
Small ; : e2401344, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708807

RESUMO

Here, a straightforward method is reported for manufacturing 3D microstructured cell-adhesive and cell-repellent multimaterials using two-photon laser printing. Compared to existing strategies, this approach offers bottom-up molecular control, high customizability, and rapid and precise 3D fabrication. The printable cell-adhesive polyethylene glycol (PEG) based material includes an Arg-Gly-Asp (RGD) containing peptide synthesized through solid-phase peptide synthesis, allowing for precise control of the peptide design. Remarkably, minimal amounts of RGD peptide (< 0.1 wt%) suffice for imparting cell-adhesiveness, while maintaining identical mechanical properties in the 3D printed microstructures to those of the cell-repellent, PEG-based material. Fluorescent labeling of the RGD peptide facilitates visualization of its presence in cell-adhesive areas. To demonstrate the broad applicability of the system, the fabrication of cell-adhesive 2.5D and 3D structures is shown, fostering the adhesion of fibroblast cells within these architectures. Thus, this approach allows for the printing of high-resolution, true 3D structures suitable for diverse applications, including cellular studies in complex environments.

3.
Phys Chem Chem Phys ; 26(8): 7190-7202, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349743

RESUMO

Light-triggered molecular switches are extensively researched for their applications in medicine, chemistry and material science and, if combined, particularly for their use in multifunctional smart materials, for which orthogonally, i.e. individually, addressable photoswitches are needed. In such a multifunctional mixture, the switching properties, efficiencies and the overall performance may be impaired by undesired mutual dependences of the photoswitches on each other. Within this study, we compare the performance of the pure photoswitches, namely an azobenzene derivative (Azo) and a donor-acceptor Stenhouse adduct (DASA), with the switching properties of their mixture using time-resolved temperature-dependent UV/VIS absorption spectroscopy, time-resolved IR absorption spectroscopy at room temperature and quantum mechanical calculations to determine effective cross sections, switching kinetics as well as activation energies of thermally induced steps. We find slightly improved effective cross sections, percentages of switched molecules and no increased activation barriers of the equimolar mixture compared to the single compounds. Thus, the studied mixture Azo + DASA is very promising for future applications in multifunctional smart materials.

4.
Small ; 19(50): e2300844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37078908

RESUMO

Macromolecules with complex, defined structures exist in nature but rarely is this degree of control afforded in synthetic macromolecules. Sequence-defined approaches provide a solution for precise control of the primary macromolecular structure. Despite a growing interest, very few examples for applications of sequence-defined macromolecules exist. In particular, the use of sequence-defined macromolecules as printable materials remains unexplored. Herein, the rational design of precise macromolecular inks for 3D microprinting is investigated for the first time. Specifically, three printable oligomers are synthesized, consisting of eight units, either crosslinkable (C) or non-functional (B) with varied sequence (BCBCBCBC, alternating; BBCCCBB, triblock; and BBBBCCCC, block). The oligomers are printed using two-photon laser printing and characterized. It is clearly demonstrated that the macromolecular sequence, specifically the positioning of the crosslinkable group, plays a critical role in both the printability and final properties of the printed material. Thus, through precise design and printability of sequence-defined macromolecules, an exciting avenue for the next generation of functional materials for 3D printing is created.

5.
J Am Chem Soc ; 144(3): 1094-1098, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35007082

RESUMO

The careful mapping of photoinduced reversible-deactivation radical polymerizations (RDRP) is a prerequisite for their applications in soft matter materials design. Here, we probe the wavelength-dependent behavior of photochemically induced atom transfer radical polymerization (ATRP) using nanosecond pulsed-laser polymerization (PLP). The photochemical reactivities at identical photon fluxes of methyl acrylate in terms of conversion, number-average molecular weight, and dispersity of the resulting polymers are mapped against the absorption spectrum of the copper(II) catalyst in the range of 305-550 nm. We observe a red shift of the action spectrum relative to the absorption spectrum of the copper(II) catalyst. Both the number-average molecular weight and the dispersity show a wavelength dependence, while the molecular weight and conversion remain linearly correlated. The reported data allow the judicious selection of optimum wavelengths for photoATRP.

6.
Angew Chem Int Ed Engl ; 59(16): 6330-6340, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31749287

RESUMO

3D printing, on all scales, is currently a vibrant topic in scientific and industrial research as it has enormous potential to radically change manufacturing. Owing to the inherent nature of the manufacturing process, 3D printed structures may require additional material to structurally support complex features. Such support material must be removed after printing-sometimes termed subtractive manufacturing-without adversely affecting the remaining structure. An elegant solution is the use of photoresists containing labile bonds that allow for controlled cleavage with specific triggers. Herein, we explore state-of-the-art cleavable photoresists for 3D direct laser writing, as well as their potential to combine additive and subtractive manufacturing in a hybrid technology. We discuss photoresist design, feature resolution, cleavage properties, and current limitations of selected examples. Furthermore, we share our perspective on possible labile bonds, and their corresponding cleavage trigger, which we believe will have a critical impact on future applications and expand the toolbox of available cleavable photoresists.

7.
J Am Chem Soc ; 141(31): 12329-12337, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31240918

RESUMO

The light-responsive adaptation of polymer materials typically requires different wavelengths or additional heat to induce reversible covalent bond formation and dissociation. Here, we bypass the use of invasive triggers by introducing light-stabilized dynamic materials that can undergo a repeatable change in topology from a covalently cross-linked material into a liquid polymer formulation by switching one visible light source on-and-off without the need for any additional triggers. Specifically, we exploit the photo-Diels-Alder reaction of triazolinediones with naphthalenes as a dynamic covalent cross-linking platform that enables green light-induced network formation, while the cross-linked material collapses through spontaneous cycloreversion upon standing in the dark at ambient temperature. Importantly, the covalent cross-links remain stabilized for as long as visible light is present, thereby retaining the material's structural integrity. This enables their potential use in an array of light-directed applications whereby network properties such as stiffness can be tuned by the mildest trigger of all: darkness.

8.
Small ; 19(50): e2309837, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38087994
9.
Angew Chem Int Ed Engl ; 56(50): 15828-15845, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-28580704

RESUMO

3D printing is a powerful emerging technology for the tailored fabrication of advanced functional materials. This Review summarizes the state-of-the art with regard to 3D laser micro- and nanoprinting and explores the chemical challenges limiting its full exploitation: from the development of advanced functional materials for applications in cell biology and electronics to the chemical barriers that need to be overcome to enable fast writing velocities with resolution below the diffraction limit. We further explore chemical means to enable direct laser writing of multiple materials in one resist by highly wavelength selective (λ-orthogonal) photochemical processes. Finally, chemical processes to construct adaptive 3D written structures that are able to respond to external stimuli, such as light, heat, pH value, or specific molecules, are highlighted, and advanced concepts for degradable scaffolds are explored.

10.
Macromol Rapid Commun ; 37(17): 1466-71, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27336692

RESUMO

A facile and efficient methodology for the formation of polymer-fullerene networks via a light-induced reaction is reported. The photochemical crosslinking is based on a nitrile imine-mediated tetrazole-ene cycloaddition reaction, which proceeds catalyst-free under UV-light irradiation (λmax = 320 nm) at ambient temperature. A tetrazole-functionalized polymer (Mn = 6500 g mol(-1) , Ð = 1.3) and fullerene C60 are employed for the formation of the hybrid networks. The tetrazole-functionalized polymer as well as the fullerene-containing networks are carefully characterized by NMR spectrometry, size exclusion chromatography, infrared spectroscopy, and elemental analysis. Furthermore, thermal analysis of the fullerene networks and their precursors is carried out. The current contribution thus induces an efficient platform technology for fullerene-based network formation.


Assuntos
Fulerenos/química , Luz , Processos Fotoquímicos/efeitos da radiação , Polímeros/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
11.
Macromol Rapid Commun ; 35(12): 1090-115, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24706548

RESUMO

The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented.


Assuntos
Dendrímeros/química , Polímeros/síntese química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
12.
Adv Mater ; 36(11): e2310100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37935054

RESUMO

Since the pioneering work of Kawata and colleagues in 1997, multi-photon 3D laser printing, also known as direct laser writing, has made significant advancements in a wide range of fields. Moreover, the development and commercialization of photocurable inks for this technique have expanded rapidly. One of the current trends is the transition from static to active printable materials, often referred to as 4D microprinting, which enables a new degree of control in the printed systems. This review focuses on four primary application areas: microrobotics, optics and photonics, microfluidics, and life sciences, highlighting recent progress and the crucial role of active materials, including liquid crystalline elastomers, hydrogels, shape memory polymers, and composites, among others. It also addresses ongoing challenges and provides insights into the future prospects in the different fields.

13.
Adv Mater ; 36(3): e2306468, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37681744

RESUMO

3D printing with light is enabled by the photochemistry underpinning it. Without fine control over the ability to photochemically gate covalent bond formation by the light at a certain wavelength and intensity, advanced photoresists with functions spanning from on-demand degradability, adaptability, rapid printing speeds, and tailored functionality are impossible to design. Herein, recent advances in photoresist design for light-driven 3D printing applications are critically assessed, and an outlook of the outstanding challenges and opportunities is provided. This is achieved by classing the discussed photoresists in chemistries that function photoinitiator-free and those that require a photoinitiator to proceed. Such a taxonomy is based on the efficiency with which photons are able to generate covalent bonds, with each concept featuring distinct advantages and drawbacks.

14.
Adv Mater ; : e2401561, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38949414

RESUMO

Digital light processing (DLP) is a 3D printing technology offering high resolution and speed. Printable materials are commonly based on multifunctional monomers, resulting in the formation of thermosets that usually cannot be reprocessed or recycled. Some efforts are made in DLP 3D printing of thermoplastic materials. However, these materials exhibit limited and poor mechanical properties. Here, a new strategy is presented for DLP 3D printing of thermoplastics based on a sequential construction of two linear polymers with contrasting (stiff and flexible) mechanical properties. The inks consist of two vinyl monomers, which lead to the stiff linear polymer, and α-lipoic acid, which forms the flexible linear polymer via thermal ring-opening polymerization in a second step. By varying the ratio of stiff and flexible linear polymers, the mechanical properties can be tuned with Young's modulus ranging from 1.1 GPa to 0.7 MPa, while the strain at break increased from 4% to 574%. Furthermore, these printed thermoplastics allow for a variety of reprocessability pathways including self-healing, solvent casting, reprinting, and closed-loop recycling of the flexible polymer, contributing to the development of a sustainable materials economy. Last, the potential of the new material in applications ranging from soft robotics to electronics is demonstrated.

15.
Adv Sci (Weinh) ; : e2401110, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864352

RESUMO

Multi-photon 3D laser printing has gathered much attention in recent years as a means of manufacturing biocompatible scaffolds that can modify and guide cellular behavior in vitro. However, in vivo tissue engineering efforts have been limited so far to the implantation of beforehand 3D printed biocompatible scaffolds and in vivo bioprinting of tissue constructs from bioinks containing cells, biomolecules, and printable hydrogel formulations. Thus, a comprehensive 3D laser printing platform for in vivo and in situ manufacturing of microimplants raised from synthetic polymer-based inks is currently missing. Here, a platform for minimal-invasive manufacturing of microimplants directly in the organism is presented by one-photon photopolymerization and multi-photon 3D laser printing. Employing a commercially available elastomeric ink giving rise to biocompatible synthetic polymer-based microimplants, first applicational examples of biological responses to in situ printed microimplants are demonstrated in the teleost fish Oryzias latipes and in embryos of the fruit fly Drosophila melanogaster. This provides a framework for future studies addressing the suitability of inks for in vivo 3D manufacturing. The platform bears great potential for the direct engineering of the intricate microarchitectures in a variety of tissues in model organisms and beyond.

16.
Adv Mater ; : e2402786, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38876261

RESUMO

Microalgae have emerged as sustainable feedstocks due to their ability to fix CO2 during cultivation, rapid growth rates, and capability to produce a wide variety of metabolites. Several microalgae accumulate lipids in high concentrations, especially triglycerides, along with lipid-soluble, photoactive pigments such as chlorophylls and derivatives. Microalgae-derived triglycerides contain longer fatty acid chains with more double bonds on average than vegetable oils, allowing a higher degree of post-functionalization. Consequently, they are especially suitable as precursors for materials that can be used in 3D printing with light. Herein, we present the use of microalgae as "biofactories" to generate materials that can be further 3D printed in high resolution In this study two taxonomically different strains -Odontella aurita (BEA 0921B) and Tetraselmis striata (BEA 1102B)- are identified as suitable microalgae for our purpose The extracts obtained from the microalgae (mainly triglycerides with chlorophyll derivatives) have been functionalized with photopolymerizable groups and used directly as printable materials (inks) without the need for additional photoinitiators. The fabrication of complex 3D microstructures with sub-micron resolution is demonstrated. Notably, the 3D printed materials show biocompatibility. Our findings open new possibilities for the next generation of sustainable, biobased, and biocompatible materials with great potential in life science applications. This article is protected by copyright. All rights reserved.

17.
Nat Commun ; 14(1): 5504, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679370

RESUMO

Additive manufacturing (AM) of polymeric materials enables the manufacturing of complex structures for a wide range of applications. Among AM methods vat photopolymerization (VP) is desired owing to improved efficiency, excellent surface finish, and printing resolution at the micron-scale. Nevertheless, the major portion of resins available for VP are based on systems with limited or negligible recyclability. Here, we describe an approach that enables the printing of a resin that is amenable to re-printing with retained properties and appearance. To that end, we take advantage of the potential of polythiourethane chemistry, which not only permits the click reaction between polythiols and polyisocyanates in the presence of organic bases, allowing a fast-printing process but also chemical recycling, reshaping, and reparation of the printed structures, paving the way toward the development of truly sustainable recyclable photoprintable resins. We demonstrate that this closed-loop 3D printing process is feasible both at the macroscale and microscale via DLP or DLW, respectively.

18.
Adv Sci (Weinh) ; 10(35): e2304147, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844996

RESUMO

Most plastics originate from limited petroleum reserves and cannot be effectively recycled at the end of their life cycle, making them a significant threat to the environment and human health. Closed-loop chemical recycling, by depolymerizing plastics into monomers that can be repolymerized, offers a promising solution for recycling otherwise wasted plastics. However, most current chemically recyclable polymers may only be prepared at the gram scale, and their depolymerization typically requires harsh conditions and high energy consumption. Herein, it reports less petroleum-dependent closed-loop recyclable silica-based nanocomposites that can be prepared on a large scale and have a fully reversible polymerization/depolymerization capability at room temperature, based on catalysis of free aminopropyl groups with the assistance of diethylamine or ethylenediamine. The nanocomposites show glass-like hardness yet plastic-like light weight and toughness, exhibiting the highest specific mechanical strength superior even to common materials such as poly(methyl methacrylate), glass, and ZrO2 ceramic, as well as demonstrating multifunctionality such as anti-fouling, low thermal conductivity, and flame retardancy. Meanwhile, these nanocomposites can be easily processed by various plastic-like scalable manufacturing methods, such as compression molding and 3D printing. These nanocomposites are expected to provide an alternative to petroleum-based plastics and contribute to a closed-loop materials economy.

19.
Adv Mater ; 35(22): e2300151, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36869278

RESUMO

A photoresist-based on a light-stabilized dynamic material driven by an out-of-equilibrium photo-Diels-Alder reaction of triazolinediones with naphthalenes-whose ability to intrinsically degrade postprinting can be tuned by a simple adjustment of laser intensity during 3D laser lithography is introduced. The resist's ability to form stable networks under green light irradiation that degrade in the dark is transformed into a tunable degradable 3D printing material platform. In-depth characterization of the printed microstructures via atomic force microscopy before and during degradation reveals the high dependency of the final structures' properties on the writing parameters. Upon identifying the ideal writing parameters and their effect on the network structure, it is possible to selectively toggle between stable and fully degradable structures. This simplifies the direct laser writing manufacturing process of multifunctional materials significantly, which typically requires the use of separate resists and consecutive writing efforts to achieve degradable and nondegradable material sections.

20.
ACS Nano ; 17(18): 18240-18252, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695780

RESUMO

Graphene nanoribbons are one-dimensional stripes of graphene with width- and edge-structure-dependent electronic properties. They can be synthesized bottom-up in solution to obtain precise ribbon geometries. Here we investigate the optical properties of solution-synthesized 9-armchair graphene nanoribbons (9-aGNRs) that are stabilized as dispersions in organic solvents and further fractionated by liquid cascade centrifugation (LCC). Absorption and photoluminescence spectroscopy reveal two near-infrared absorption and emission peaks whose ratios depend on the LCC fraction. Low-temperature single-nanoribbon photoluminescence spectra suggest the presence of two different nanoribbon species. Based on density functional theory (DFT) and time-dependent DFT calculations, the lowest energy transition can be assigned to pristine 9-aGNRs, while 9-aGNRs with edge-defects, caused by incomplete graphitization, result in more blue-shifted transitions and higher Raman D/G-mode ratios. Hole doping of 9-aGNR dispersions with the electron acceptor F4TCNQ leads to concentration dependent bleaching and quenching of the main absorption and emission bands and the appearance of red-shifted, charge-induced absorption features but no additional emission peaks, thus indicating the formation of polarons instead of the predicted trions (charged excitons) in doped 9-aGNRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA