Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Chemistry ; 30(18): e202303012, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38266207

RESUMO

The use of Mg-based biomaterials with a number of their advantageous properties are overshadowed by uncontrollable metal corrosion. Moreover, the use of implants goes alongside with the threat of pathogens-associated complications. In this study, PEO coated Mg biomaterial loaded with antibacterial Ag(I) and Cu(II) complexes is produced and tested to meet both appropriate protective characteristics as well as sufficient level of antibacterial activity. To achieve a suitable level of anticorrosion protection phosphate and fluoride-phosphate electrolytes are used in the PEO process. Investigation of the surface thickness and morphology done by means of cross-section analysis and scanning electron microscopy (SEM), as well as electrochemical impedance spectroscopy (EIS) assay show precedence of the fluoride containing PEO coating and make it the material of choice for further modification with Ag(I) and Cu(II) complexes. The presence of the complexes on the PEO surface is confirmed by energy dispersive X-ray spectroscopy (EDX). X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and glow discharge optical emission spectroscopy (GDOES) are used to estimate the complexes' chemical state and depth of penetration in the coating surface. Based on the results of antibacterial assay, the modified coatings are found to be active against both Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos , Fluoretos , Antibacterianos/farmacologia , Propriedades de Superfície , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Materiais Biocompatíveis , Espectroscopia Fotoeletrônica , Fosfatos
2.
Phys Chem Chem Phys ; 22(31): 17574-17586, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716424

RESUMO

Kinetic parameters for three anion exchange reactions - Zn-LDH-NO3→ Zn-LDH-Cl, Zn-LDH-NO3→ Zn-LDH-SO4 and Zn-LDH-NO3→ Zn-LDH-VOx- were obtained by in situ synchrotron study. The first and the second ones are two-stage reactions; the first stage is characterized by the two-dimensional diffusion-controlled reaction following deceleratory nucleation and the second stage is a one-dimensional diffusion-controlled reaction also with a decelerator nucleation effect. In the case of exchange NO3-→ Cl- host anions are completely released, while in the case of NO3-→ SO42- the reaction ends without complete release of nitrate anions. The exchange of Zn-LDH-NO3→ Zn-LDH-VOx is a one-stage reaction and goes much slower than the previous two cases. The latter is characterized by a one stage two-dimensional reaction with an instantaneous nucleation. As a result, at the end of this process there are two crystalline phases with different polyvanadate species, presumably V4O124- and V2O74-, nitrate anions were not completely released. The rate of replacing NO3- anions by guest ones can be represented as Cl- > SO42- > VOxy-.

3.
Phys Chem Chem Phys ; 18(2): 1279-91, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26660298

RESUMO

This article provides a contribution towards the mechanistic understanding of surface phenomena observed during the corrosion of Mg-based substrates particularly in the low anodic polarization range. The concept considers the recent literature explaining cathodic hydrogen evolution from noble acting areas even during global anodic polarization. Heavy metal impurities in the ppm range or intermetallics are always present even in highly pure magnesium. Their potential effect was investigated here in more detail. The experimental results contribute to understanding the role of iron impurities in dark area formation and suggest a way for linking the observed phenomena to the recent literature. The shown enhanced cathodic activity of dark areas especially at the corrosion front and the superfluous hydrogen are linked to an iron re-deposition mechanism due to iron reduction. The proposed mechanism is based on the results obtained from innovative characterisation techniques using magnetic fields, diffraction experiments and transmission electron microscopy, which show the formation of iron rich zones, especially at the corrosion front offering "in statu nascendi" metallic Fe films acting as active cathodes for hydrogen reduction.

4.
ACS Appl Mater Interfaces ; 16(9): 11944-11956, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38404036

RESUMO

A novel inhibitor-loaded bilayer hybrid system based on the LDH inner layer and MOF outer layer is designed on an aluminum alloy 2A12 surface to improve corrosion performance. The hybrid film system covers the inherent cavities and intercrystalline defects of the LDH film using the affinity between the LDH and the MOF compounds. The results demonstrate that the LDH-inhI precursor film is entirely covered by new Zn-based MOF microrods. The LDH-inhI precursor film is partially dissolved and recrystallized in favor of MOF crystal growth to strengthen the binding adhesion between LDH and MOF films. The LDH-inhI/MOF-inhII bilayer film shows significantly enhanced corrosion resistance through the synergistic action of LDH and MOF nanocontainers doped with different corrosion inhibitors (vanadates, 2,5-furandicarboxylic acid, and benzotriazoles). Due to the multiple loadings of the MOF film and the sustained-release of the LDH film, this method provides an effective approach to developing new anticorrosion systems and enhancing both the barrier ability and active corrosion protection performance of LDH-based conversion treatments.

5.
ACS Appl Mater Interfaces ; 15(4): 6098-6112, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689631

RESUMO

This work first describes the intercalation of corrosion inhibitors into layered double hydroxides LDH-OH/CO3 nanocontainers (parental LDH) obtained in situ on the surface of magnesium alloy AZ91 in the presence of a chelating agent. Vanadate, as a typical broad inhibitor for active metals, and oxalate, as an inhibitor suitable for magnesium, were selected as a first approach. The optimization of exchange conditions was performed, and the optimal parameters (ambient pressure and 95 °C) were selected. The corrosion protective properties of obtained LDH-based layers were studied using immersion and salt spray tests in NaCl solution, supported by electrochemical impedance spectroscopy and atomic emission spectroelectrochemistry. It is demonstrated that vanadate intercalated into LDH is more effective for the active protection of AZ91 in comparison to the performance of oxalate. A possible mechanism of corrosion inhibition based on the application of LDH nanocontainers is suggested and discussed.

6.
ACS Omega ; 7(14): 12412-12423, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449924

RESUMO

Effective protective coatings are an essential component of lightweight engineering materials in a large variety of applications as they ensure structural integrity of the base material throughout its whole service life. Layered double hydroxides (LDHs) loaded with corrosion inhibitors depict a promising approach to realize an active corrosion protection for aluminum and magnesium. In this work, we employed a combination of density functional theory and molecular dynamics simulations to gain a deeper understanding of the influence of intercalated water content on the structure, the stability, and the anion-exchange capacity of four different LDH systems containing either nitrate, carbonate, or oxalate as potential corrosion inhibiting agents or chloride as a corrosion initiator. To quantify the structural change, we studied the atom density distribution, radial distribution function, and orientation of the intercalated anions. Additionally, we determined the stability of the LDH systems by calculating their respective hydration energies, hydrogen-bonded network connected to the intercalated water molecules, as well as the self-diffusion coefficients of the intercalated anions to provide an estimate for the probability of their release after intercalation. The obtained computational results suggest that the hydration state of LDHs has a significant effect on their key properties like interlayer spacing and self-diffusion coefficients of the intercalated anions. Furthermore, we conclude from our simulation results that a high self-diffusion coefficient which is linked to the mobility of the intercalated anions is vital for its release via an anion-exchange mechanism and to subsequently mitigate corrosion reactions. Furthermore, the presented theoretical study provides a robust force field for the computer-assisted design of further LDH-based active anticorrosion coatings.

7.
Materials (Basel) ; 15(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35207842

RESUMO

Typically, steel is protected from corrosion by employing sacrificial anodes or coatings based on Zn, Mg, Al or Cd. However, stricter environmental regulations require new environmentally friendly alternatives to replace Cd. Traditionally, Al-based anodes have been employed to cathodically protect steel in marine applications or as ion vapour deposition (IVD)-Al sacrificial coatings for aerospace applications. However, Al tends to passivate, thus losing its protective effect. Therefore, it is important to identify possible alloys that can provide a constantly sufficient current. In this study, Al-X alloys (X = Ag, Bi, Ca, Cr, Cu, Ga, Gd, In, Mg, Mn, Ni, Sb, Si, Sn, V, Ti, Zn and Zr) were firstly tested for a screening of the sacrificial properties of binary systems. Al-0.5Cr, Al-1Sn, Al-0.2Ga, Al-0.1In, Al-2Si and Al-5Zn alloys were suggested as promising sacrificial Al-based alloys. Suitable heat treatments for each system were implemented to reduce the influence of the secondary phases on the corrosion properties by minimising localised attack. extensive evaluation of the corrosion properties, including galvanic coupling of these alloys to steel, was performed in the NaCl electrolyte. A comparative analysis was conducted in order to choose the most promising alloy(s) for avoiding the passivation of Al and for efficient cathodic protection to steel.

8.
Materials (Basel) ; 15(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499985

RESUMO

Owing to the unique active corrosion protection characteristic of hexavalent chromium-based systems, they have been projected to be highly effective solutions against the corrosion of many engineering metals. However, hexavalent chromium, rendered a highly toxic and carcinogenic substance, is being phased out of industrial applications. Thus, over the past few years, extensive and concerted efforts have been made to develop environmentally friendly alternative technologies with comparable or better corrosion protection performance to that of hexavalent chromium-based technologies. The introduction of corrosion inhibitors to a coating system on magnesium surface is a cost-effective approach not only for improving the overall corrosion protection performance, but also for imparting active inhibition during the service life of the magnesium part. Therefore, in an attempt to resemble the unique active corrosion protection characteristic of the hexavalent chromium-based systems, the incorporation of inhibitors to barrier coatings on magnesium alloys has been extensively investigated. In Part III of the Review, several types of corrosion inhibitors for magnesium and its alloys are reviewed. A discussion of the state-of-the-art inhibitor systems, such as iron-binding inhibitors and inhibitor mixtures, is presented, and perspective directions of research are outlined, including in silico or computational screening of corrosion inhibitors. Finally, the combination of corrosion inhibitors with other corrosion protection strategies is reviewed. Several reported highly protective coatings with active inhibition capabilities stemming from the on-demand activation of incorporated inhibitors can be considered a promising replacement for hexavalent chromium-based technologies, as long as their deployment is adequately addressed.

9.
Materials (Basel) ; 15(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500010

RESUMO

Although hexavalent chromium-based protection systems are effective and their long-term performance is well understood, they can no longer be used due to their proven Cr(VI) toxicity and carcinogenic effect. The search for alternative protection technologies for Mg alloys has been going on for at least a couple of decades. However, surface treatment systems with equivalent efficacies to that of Cr(VI)-based ones have only begun to emerge much more recently. It is still proving challenging to find sufficiently protective replacements for Cr(VI) that do not give rise to safety concerns related to corrosion, especially in terms of fulfilling the requirements of the transportation industry. Additionally, in overcoming these obstacles, the advantages of newly introduced technologies have to include not only health safety but also need to be balanced against their added cost, as well as being environmentally friendly and simple to implement and maintain. Anodizing, especially when carried out above the breakdown potential (technology known as Plasma Electrolytic Oxidation (PEO)) is an electrochemical oxidation process which has been recognized as one of the most effective methods to significantly improve the corrosion resistance of Mg and its alloys by forming a protective ceramic-like layer on their surface that isolates the base material from aggressive environmental agents. Part II of this review summarizes developments in and future outlooks for Mg anodizing, including traditional chromium-based processes and newly developed chromium-free alternatives, such as PEO technology and the use of organic electrolytes. This work provides an overview of processing parameters such as electrolyte composition and additives, voltage/current regimes, and post-treatment sealing strategies that influence the corrosion performance of the coatings. This large variability of the fabrication conditions makes it possible to obtain Cr-free products that meet the industrial requirements for performance, as expected from traditional Cr-based technologies.

10.
Materials (Basel) ; 15(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500170

RESUMO

Corrosion protection systems based on hexavalent chromium are traditionally perceived to be a panacea for many engineering metals including magnesium alloys. However, bans and strict application regulations attributed to environmental concerns and the carcinogenic nature of hexavalent chromium have driven a considerable amount of effort into developing safer and more environmentally friendly alternative techniques that provide the desired corrosion protection performance for magnesium and its alloys. Part I of this review series considers the various pre-treatment methods as the earliest step involved in the preparation of Mg surfaces for the purpose of further anti-corrosion treatments. The decisive effect of pre-treatment on the corrosion properties of both bare and coated magnesium is discussed. The second section of this review covers the fundamentals and performance of conventional and state-of-the-art conversion coating formulations including phosphate-based, rare-earth-based, vanadate, fluoride-based, and LDH. In addition, the advantages and challenges of each conversion coating formulation are discussed to accommodate the perspectives on their application and future development. Several auspicious corrosion protection performances have been reported as the outcome of extensive ongoing research dedicated to the development of conversion coatings, which can potentially replace hazardous chromium(VI)-based technologies in industries.

11.
Materials (Basel) ; 15(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36143626

RESUMO

In this work, the porosity of plasma electrolytic oxidation (PEO)-based coatings on Al- and Mg-based substrates was studied by two imaging techniques-namely, SEM and computer microtomography. Two approaches for porosity determination were chosen; relatively simple and fast SEM surface and cross-sectional imaging was compared with X-ray micro computed tomography (microCT) rendering. Differences between 2D and 3D porosity were demonstrated and explained. A more compact PEO coating was found on the Al substrate, with a lower porosity compared to Mg substrates under the same processing parameters. Furthermore, huge pore clusters were detected with microCT. Overall, 2D surface porosity calculations did not show sufficient accuracy for them to become the recommended method for the exact evaluation of the porosity of PEO coatings; microCT is a more appropriate method for porosity evaluation compared to SEM imaging. Moreover, the advantage of 3D microCT images clearly lies in the detection of closed and open porosity, which are important for coating properties.

12.
ACS Appl Mater Interfaces ; 13(43): 51685-51694, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34670367

RESUMO

A promising double-ligand strategy for the delivery of active corrosion inhibitors by a Zn(II)-based metal-organic framework (Zn-MOF) is developed. Zn-MOF compounds were synthesized by a facile one-pot solvothermal method and characterized. The Zn-MOF is based on the corrosion inhibitor benzotriazole (BTA) and 2,5-furandicarboxylic acid (H2FDA) ligand, which is a promising renewable building block alternative to terephthalic or isophthalic acid. The crystal structure and morphology are characterized by single-crystal X-ray diffraction analysis, powder X-ray diffraction analysis (PXRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The synthesized MOF crystallites are in the trigonal space group R3c with the cell parameters in a three-dimensional (3D) anionic framework. Their ability to inhibit the corrosion process of aluminum alloy 2A12 in NaCl solution was also evaluated by immersion tests in solutions with and without a MOF. The postcorrosion analysis was performed by SEM and X-ray photoelectron spectroscopy (XPS). Additional information about the inhibition efficiency was obtained by electrochemical impedance spectroscopy (EIS). The results suggest that the as-synthesized MOF can release the inhibitors and form protective layers effectively on the surface of the aluminum alloy. The use of inhibitor-loaded MOF nanocontainers provides promising opportunities for the smart delivery of inhibitors and effective corrosion protection of 2A12 aluminum alloys.

13.
Bioact Mater ; 6(12): 4333-4341, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33997510

RESUMO

Lean alloy (low alloyed) is beneficial for long-term sustainable development of metal materials. Creating a nanocrystalline microstructure is a desirable approach to improve biodegradability and mechanical properties of lean biomedical Mg alloy, but it is nearly impossible to realize. In the present study, the bulk nanocrystalline Mg alloy (average grain size: ~70 nm) was successfully obtained by hot rolling process of a lean Mg-2wt.%Zn (Z2) alloy and both high strength ((223 MPa (YS) and 260 MPa (UTS)) and good corrosion resistance (corrosion rate in vivo: 0.2 mm/year) could be achieved. The microstructure evolution during the rolling process was analyzed and discussed. Several factors including large strain, fine grains, strong basal texture, high temperature and Zn segregation conjointly provided the possibility for the activation of pyramidal slip to produce nanocrystals. This finding could provide a new development direction and field of application for lean biomedical Mg alloys.

14.
Acta Biomater ; 121: 695-712, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33279710

RESUMO

The influence of amount of intermetallics on the degradation of as-extruded Mg-Nd alloys with different contents of Nd was investigated via immersion testing in DMEM+10% FBS under cell culture conditions and subsequent microstructural characterizations. It is found that the presence of intermetallic particles Mg41Nd5 affects the corrosion of Mg-Nd alloys in two conflicting ways. One is their negative role that their existence enhances the micro-galvanic corrosion. Another is their positive role. Their existence favours the formation of a continuous and compact corrosion layer. At the early stage of immersion, their negative role predominated. The degradation rate of Mg-Nd alloys monotonously increases with increasing the amount of intermetallics. Mg-5Nd alloy with maximum amount of intermetallics suffered from the most severe corrosion. With the immersion proceeding (≥7 days), then the positive role of these intermetallic particles Mg41Nd5 could not be neglected. Owing to the interaction between their positive and negative roles, at the later stage of immersion the corrosion rate of Mg-Nd alloys first increases with increasing the content of Nd, then reaches to the maximum at 2 wt. % Nd. With a further increase of Nd content, a decrease in corrosion rate occurs. The main corrosion products on the surfaces of Mg-Nd alloys include carbonates, calcium-phosphate, neodymium oxide and/or neodymium hydroxide. They are amorphous at the early stage of immersion. With the immersion proceeding, they are transformed to crystalline. The existence of undegradable Mg41Nd5 particles in the corrosion layer can enhance the crystallization of such amorphous corrosion products.


Assuntos
Ligas , Magnésio , Corrosão , Teste de Materiais
15.
ACS Omega ; 5(38): 24186-24194, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015434

RESUMO

Thermally sprayed hydroxyapatite coatings are one of the main strategies to improve the bioactivation of metal implants. However, the naturally low corrosion resistance of these coatings is the main challenge for their use. In this study, plasma electrolytic oxidation (PEO) was used to create an intermediate layer. The anodization process was used for comparison. According to the polarization curves, the PEO layer was more effective than the anodized layer in reducing the corrosion current density (I corr of 0.05 × 10-9 A/cm2 vs I corr of 0.05 A/cm2). The results of electrochemical impedance spectroscopy showed higher resistance of the sample with a PEO interlayer than that of the sample with an anodized interlayer. The results of the hydrogen evolution test revealed that the PEO layer as a middle layer served as the main barrier for reducing the magnesium corrosion rate, especially during the initial immersion time.

16.
Acta Biomater ; 107: 349-361, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32126309

RESUMO

Microstructural design was a long-term sustainable development method to improve the biodegradability and mechanical properties of low alloyed biomedical Mg alloys. In this study, the microstructural features (including grain size, deformation twin, deformed grains, sub-grains, and recrystallized grains) of the MZ2 ((Mg-2Zn (wt%)) alloy were controlled by different single-passed rolling reductions at high temperature. Besides the effect of grain size, we found that deformation twins and deformed grains influenced corrosion performance. Grain refinement with uniform distribution, meanwhile reducing the content of deformation twins, deformed grains, and sub-grains, was a practical method to improve both corrosion resistance and mechanical properties of MZ2 alloy. This finding proposed a better understanding of the development of lean biomedical Mg alloys with superior mechanical properties and favorable corrosion resistance. STATEMENT OF SIGNIFICANCE: Current research and development of biomedical Mg focused on alloying methods. The lean biodegradable Mg, which reduced the materials' compositional complexity, was the benefit of development for long-term sustainability. Here, our work revealed the relationship between microstructural features and corrosion resistance of a lean Mg-2Zn alloy during the different single-passed rolling processes. We found that recrystallized fine grains with partially ultra-fine grains could improve both strength and corrosion resistance. This study could give a new understanding of the development of lean biodegradable Mg alloys by using microstructural design to improve the overall performance of biomedical applications.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Magnésio/química , Zinco/química , Ligas/toxicidade , Animais , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Temperatura Alta , Magnésio/toxicidade , Teste de Materiais , Camundongos , Oxirredução , Tamanho da Partícula , Resistência à Tração , Zinco/toxicidade
17.
Nanomaterials (Basel) ; 10(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422891

RESUMO

In this work we demonstrate the role of grain boundaries and domain walls in the local transport properties of n- and p-doped bismuth ferrites, including the influence of these singularities on the space charge imbalance of the energy band structure. This is mainly due to the charge accumulation at domain walls, which is recognized as the main mechanism responsible for the electrical conductivity in polar thin films and single crystals, while there is an obvious gap in the understanding of the precise mechanism of conductivity in ferroelectric ceramics. The conductivity of the Bi0.95Ca0.05Fe1-xTixO3-δ (x = 0, 0.05, 0.1; δ = (0.05 - x)/2) samples was studied using a scanning probe microscopy approach at the nanoscale level as a function of bias voltage and chemical composition. The obtained results reveal a distinct correlation between electrical properties and the type of charged defects when the anion-deficient (x = 0) compound exhibits a three order of magnitude increase in conductivity as compared with the charge-balanced (x = 0.05) and cation-deficient (x = 0.1) samples, which is well described within the band diagram representation. The data provide an approach to control the transport properties of multiferroic bismuth ferrites through aliovalent chemical substitution.

18.
Materials (Basel) ; 11(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513610

RESUMO

In the frame of the current work, it was shown that plasma electrolytic oxidation (PEO) treatment can be applied on top of phosphoric sulfuric acid (PSA) anodized aluminum alloy AA2024. Being hard and well-adherent to the substrate, PEO layers improve both corrosion and wear resistance of the material. To facilitate PEO formation and achieve a dense layer, the systematic analysis of PEO layer formation on the preliminary PSA anodized layer was performed in this work. The microstructure, morphology, and composition of formed PEO coatings were investigated using scanning electron microscopy (SEM), x-ray diffraction (XRD), and glow-discharge optical emission spectroscopy (GDOES). It was shown that under constant current treatment conditions, the PSA layer survived under the applied voltage of 350 V, whilst 400 V was an intermediate stage; and under 450 V, the PSA layer was fully converted after 5 min of the treatment. The comparison test with PEO formation on the bare material was performed. It was confirmed that during the "sparking" mode (400 V) of PEO formation, the PEO coatings, formed on PSA treated AA2024, were more wear resistant than the same PEO coatings on bare AA2024.

19.
ACS Appl Mater Interfaces ; 10(36): 30741-30751, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30114361

RESUMO

Epoxy-based polymer was deposited as sealing agent on porous anodized coatings prepared by plasma electrolytic oxidation (PEO) to construct multilayered "soft-hard" coatings on Mg substrates. Different thicknesses and microstructures of the top epoxy layer were achieved by employing different dip-coating strategies. Atomic force microscopy, pull-off tests, and nanoindentation tests were conducted to study the surface roughness, the adhesion strength of the epoxy layer, and the mechanical properties of each component in the hybrid coating system. The micropores and other defects on the anodized layers were sealed by the epoxy polymer, which decreased the surface roughness. The dominant abrasive wear behavior of blank PEO coatings was significantly reduced by the epoxy layers, and the wear mechanism of the hybrid coatings was proposed considering both the microstructure of the hybrid coatings and the mechanical properties of the different components in the hybrid system.

20.
Biomaterials ; 28(13): 2163-74, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17276507

RESUMO

Recent studies indicate that there is a high demand to design magnesium alloys with adjustable corrosion rates and suitable mechanical properties. An approach to this challenge might be the application of metal matrix composite (MMC) based on magnesium alloys. In this study, a MMC made of magnesium alloy AZ91D as a matrix and hydroxyapatite (HA) particles as reinforcements have been investigated in vitro for mechanical, corrosive and cytocompatible properties. The mechanical properties of the MMC-HA were adjustable by the choice of HA particle size and distribution. Corrosion tests revealed that HA particles stabilised the corrosion rate and exhibited more uniform corrosion attack in artificial sea water and cell solutions. The phase identification showed that all samples contained hcp-Mg, Mg(17)Al(12), and HA before and after immersion. After immersion in artificial sea water CaCO3 was found on MMC-HA surfaces, while no formation of CaCO3 was found after immersion in cell solutions with and without proteins. Co-cultivation of MMC-HA with human bone derived cells (HBDC), cells of an osteoblasts lineage (MG-63) and cells of a macrophage lineage (RAW264.7) revealed that RAW264.7, MG-63 and HBDC adhere, proliferate and survive on the corroding surfaces of MMC-HA. In summary, biodegradable MMC-HA are cytocompatible biomaterials with adjustable mechanical and corrosive properties.


Assuntos
Materiais Biocompatíveis/química , Biodegradação Ambiental , Durapatita/química , Magnésio/química , Metais/química , Ligas/química , Animais , Carbonato de Cálcio/química , Adesão Celular , Linhagem Celular , Eletroquímica/métodos , Humanos , Camundongos , Osteoblastos/metabolismo , Síncrotrons , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA