Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(6)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38124015

RESUMO

Opioid use disorder is a chronic, relapsing disease associated with persistent changes in brain plasticity. A common single nucleotide polymorphism (SNP) in the µ-opioid receptor gene, OPRM1 A118G, is associated with altered vulnerability to opioid addiction. Reconfiguration of neuronal connectivity may explain dependence risk in individuals with this SNP. Mice with the equivalent Oprm1 variant, A112G, demonstrate sex-specific alterations in the rewarding properties of morphine and heroin. To determine whether this SNP influences network-level changes in neuronal activity, we compared FOS expression in male and female mice that were opioid-naive or opioid-dependent. Network analyses identified significant differences between the AA and GG Oprm1 genotypes. Based on several graph theory metrics, including small-world analysis and degree centrality, we show that GG females in the opioid-dependent state exhibit distinct patterns of connectivity compared to other groups of the same genotype. Using a network control theory approach, we identified key cortical brain regions that drive the transition between opioid-naive and opioid-dependent brain states; however, these regions are less influential in GG females leading to sixfold higher average minimum energy needed to transition from the acute to the dependent state. In addition, we found that the opioid-dependent brain state is significantly less stable in GG females compared to other groups. Collectively, our findings demonstrate sex- and genotype-specific modifications in local, mesoscale, and global properties of functional brain networks following opioid exposure and provide a framework for identifying genotype differences in specific brain regions that play a role in opioid dependence.


Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Masculino , Camundongos , Feminino , Animais , Receptores Opioides , Receptores Opioides mu/metabolismo , Genótipo , Transtornos Relacionados ao Uso de Opioides/genética , Polimorfismo de Nucleotídeo Único/genética
2.
Proc Natl Acad Sci U S A ; 117(32): 19556-19565, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32694207

RESUMO

Opioid addiction is a chronic, relapsing disorder associated with persistent changes in brain plasticity. Reconfiguration of neuronal connectivity may explain heightened abuse liability in individuals with a history of chronic drug exposure. To characterize network-level changes in neuronal activity induced by chronic opiate exposure, we compared FOS expression in mice that are morphine-naïve, morphine-dependent, or have undergone 4 wk of withdrawal from chronic morphine exposure, relative to saline-exposed controls. Pairwise interregional correlations in FOS expression data were used to construct network models that reveal a persistent reduction in connectivity strength following opiate dependence. Further, we demonstrate that basal gene expression patterns are predictive of changes in FOS correlation networks in the morphine-dependent state. Finally, we determine that regions of the hippocampus, striatum, and midbrain are most influential in driving transitions between opiate-naïve and opiate-dependent brain states using a control theoretic approach. This study provides a framework for predicting the influence of specific therapeutic interventions on the state of the opiate-dependent brain.


Assuntos
Encéfalo/fisiopatologia , Dependência de Morfina/fisiopatologia , Rede Nervosa/fisiopatologia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Conectoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Morfina/administração & dosagem , Morfina/efeitos adversos , Dependência de Morfina/metabolismo , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Plasticidade Neuronal/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia
3.
Allergol Int ; 71(1): 55-65, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34688555

RESUMO

BACKGROUND: Although population studies have implicated emotional burden in asthma severity, the underlying genetic risk factors are not completely understood. We aimed to evaluate the genetic influence of a functional single-nucleotide polymorphism (SNP) in the stress-related µ-opioid receptor gene (OPRM1; A118G SNP, rs1799971) on asthma severity. METHODS: We initially assessed disease severity in asthmatic outpatients carrying A118G. Using an ovalbumin-induced experimental asthma rodent model harboring the functionally equivalent SNP, we investigated the mechanism by which this SNP influences the allergic immune response. RESULTS: Among 292 outpatients, 168 underwent airway hyperresponsiveness (AHR) to methacholine testing. Compared with patients carrying the AA and AG genotypes, those carrying the GG genotype exhibited enhanced AHR. The stress levels were presumed to be moderate among patients and were comparable among genotypes. Compared with Oprm1 AA mice, GG mice demonstrated aggravated asthma-related features and increased pulmonary interleukin-4+CD4+ effector and effector memory T cells under everyday life stress conditions. Intraperitoneal naloxone methiodide injection reduced effector CD4+ T cell elevation associated with increased eosinophil numbers in bronchoalveolar lavage fluid of GG mice to the levels in AA mice, suggesting that elevated Th2 cell generation in the bronchial lymph node (BLN) of GG mice induces enhanced eosinophilic inflammation. CONCLUSIONS: Without forced stress exposure, patients with asthma carrying the OPRM1 GG genotype exhibit enhanced AHR, attributable to enhanced Th2 cell differentiation in the regional lymph node. Further research is necessary to elucidate the role of the OPRM1 A118G genotype in the Th2 cell differentiation pathway in the BLN.


Assuntos
Asma/genética , Receptores Opioides mu/genética , Índice de Gravidade de Doença , Adulto , Animais , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Células Th2/metabolismo
4.
Addict Biol ; 26(4): e12994, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33325096

RESUMO

Prescription opioid misuse is a major public health concern among children and adolescents in the United States. Opioids are the most commonly abused drugs and are the fastest growing drug problem among adolescents. In humans and animals, adolescence is a particularly sensitive period associated with an increased response to drugs of abuse. Our previous studies indicate that oxycodone exposure during adolescence increases morphine reward in adulthood. How early drug exposure mediates long-term changes in the brain and behavior is not known, but epigenetic regulation is a likely mechanism. To address this question, we exposed mice to oxycodone or saline during adolescence and examined epigenetic modifications at genes associated with dopamine activity during adulthood at early and late withdrawal, in the ventral tegmental area (VTA). We then compared these with alterations in the VTA of adult-treated mice following an equivalent duration of exposure and withdrawal to determine if the effects of oxycodone are age dependent. We observed persistence of adolescent-like gene expression following adolescent oxycodone exposure relative to age-matched saline exposed controls, although dopamine-related gene expression was transiently activated at 1 day of withdrawal. Following prolonged withdrawal enrichment of the repressive histone mark, H3K27me3, was maintained, consistent with inhibition of gene regulation following adolescent exposure. By contrast, mice exposed to oxycodone as adults showed loss of the repressive mark and increased gene expression following 28 days of withdrawal following oxycodone exposure. Together, our findings provide evidence that adolescent oxycodone exposure has long-term epigenetic consequences in VTA of the developing brain.


Assuntos
Analgésicos Opioides/metabolismo , Dopamina/metabolismo , Expressão Gênica/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/metabolismo , Oxicodona/metabolismo , Animais , Epigênese Genética/efeitos dos fármacos , Masculino , Camundongos , Morfina/metabolismo , Recompensa , Autoadministração , Área Tegmentar Ventral/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 115(16): 4282-4287, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610348

RESUMO

Cigarette smoking is the leading cause of preventable disease and death in the United States, with more persons dying from nicotine addiction than any other preventable cause of death. Even though smoking cessation incurs multiple health benefits, the abstinence rate remains low with current medications. Here we show that the AMP-activated protein kinase (AMPK) pathway in the hippocampus is activated following chronic nicotine use, an effect that is rapidly reversed by nicotine withdrawal. Increasing pAMPK levels and, consequently, downstream AMPK signaling pharmacologically attenuate anxiety-like behavior following nicotine withdrawal. We show that metformin, a known AMPK activator in the periphery, reduces withdrawal symptoms through a mechanism dependent on the presence of the AMPKα subunits within the hippocampus. This study provides evidence of a direct effect of AMPK modulation on nicotine withdrawal symptoms and suggests central AMPK activation as a therapeutic target for smoking cessation.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Transtornos de Ansiedade/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Metformina/uso terapêutico , Proteínas do Tecido Nervoso/efeitos dos fármacos , Nicotina/efeitos adversos , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/fisiologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Transtornos de Ansiedade/induzido quimicamente , Transtornos de Ansiedade/enzimologia , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hipocampo/enzimologia , Masculino , Metformina/farmacologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/enzimologia , Tabagismo/enzimologia , Tabagismo/psicologia
6.
J Neurosci ; 39(29): 5685-5696, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31109961

RESUMO

Mu-opioid receptors (MORs) are the primary site of action of opioid drugs, both licit and illicit. Susceptibility to opioid addiction is associated with variants in the gene encoding the MOR, OPRM1 Varying with ethnicity, ∼25% of humans carry a single nucleotide polymorphism (SNP) in OPRM1 (A118G). This SNP produces a nonsynonymous amino acid substitution, replacing asparagine (N40) with aspartate (D40), and has been linked with an increased risk for drug addiction. While a murine model of human OPRM1 A118G (A112G in mouse) recapitulates most of the phenotypes reported in humans, the neuronal mechanisms underlying these phenotypes remain elusive. Here, we investigated the impact of A118G on opioid regulation of synaptic transmission in mesolimbic VTA dopaminergic neurons. Using electrophysiology, we showed that both inhibitory and excitatory inputs to VTA dopaminergic neurons projecting to the NAc medial shell were suppressed by the MOR agonists DAMGO and morphine, which caused a shift in the excitatory/inhibitory balance and an increased action potential firing rate. Mice carrying the 112G/G allele exhibited lower sensitivity to DAMGO and morphine compared with major allele carriers (112A/A). Paradoxically, DAMGO produced facilitatory effects on mEPSCs, which were mediated by presynaptic GABAB receptors. However, this was only prominent in homozygous major allele carriers, which could explain a stronger shift in action potential firing in 112A/A mice. This study provides a better understanding on the neurobiological mechanisms that may underlie risk of addiction development in carriers of the A118G SNP in OPRM1SIGNIFICANCE STATEMENT The pandemic of opioid drug abuse is associated with many socioeconomic burdens. The primary brain target of opioid drugs is the µ-opioid receptor (MOR), encoded by the OPRM1 gene, which is highly polymorphic in humans. Using a mouse model of the human OPRM1 A118G single nucleotide polymorphism (SNP) (A112G in mice), we demonstrated that MOR and GABAB signaling coordinate in regulating mesolimbic dopamine neuronal firing via presynaptic regulation. The A118G SNP affects MOR-mediated suppression of GABA and glutamate release, showing weaker efficacy of synaptic regulation by MORs. These results may shed light on whether MOR SNPs need to be considered for devising effective therapeutic interventions.


Assuntos
Variação Genética/fisiologia , Rede Nervosa/fisiologia , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Recompensa , Sinapses/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Analgésicos Opioides/farmacologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Variação Genética/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/fisiologia , Camundongos , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Receptores Opioides mu/agonistas , Sinapses/efeitos dos fármacos
7.
Addict Biol ; 25(5): e12806, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31267641

RESUMO

Opioid use among pregnant women is a growing public health concern in the United States. Infants exposed to opioids in utero are at risk of exhibiting neonatal opioid withdrawal syndrome (NOWS). The biological mechanisms underlying short and long-term consequences of in utero opioid exposure and NOWS are unknown. A potential genetic factor is a single-nucleotide polymorphism (SNP) in the mu-opioid receptor gene (OPRM1 A118G). Opioid exposed infants with the G-allele spend less time in hospitals after birth. To determine whether this SNP modulates the neurobehavioral effects of neonatal opioid exposure and withdrawal, we used mice possessing the equivalent Oprm1 SNP (A112G). Pups were treated chronically with saline or morphine from postnatal days (PNDs) 1 to 14, a developmental period equivalent to the third trimester of a human pregnancy and a sensitive period for opioid exposure in rodents. Morphine treatment produced significant developmental delays regardless of genotype and increased total ultrasonic vocalizations in males during spontaneous withdrawal. Animals were aged and tested for anxiety and drug response during adolescence and adulthood, respectively. AA morphine-treated animals showed reduced activity in the marble burying task compared with saline controls; however, this effect was absent in AG and GG animals. As adults, AA males exposed to morphine from PNDs 1 to 14 exhibited enhanced development of locomotor sensitization to morphine, whereas females showed reduced locomotor sensitization. These data suggest the involvement of the Oprm1 SNP for certain outcomes of neonatal opioid exposure and highlight the importance of considering sex and genetic variability for the prognosis of NOWS.


Assuntos
Analgésicos Opioides/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/genética , Polimorfismo de Nucleotídeo Único/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Receptores Opioides mu/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Gravidez , Receptores Opioides mu/efeitos dos fármacos
8.
Brain Behav Immun ; 81: 388-398, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31255680

RESUMO

The transcription factor CREB (cyclic AMP response element (CRE)-binding protein) is implicated in the pathophysiology and treatment of depression. Structural and functional studies in both animals and humans suggest that abnormalities of the hippocampus may play a role in depression. CREB regulates thousands of genes, yet to date, only a handful that mediate depression or antidepressant response have been identified as relevant CREB targets. In order to comprehensively identify genes regulated by CREB in the hippocampus, we employed translating ribosome affinity purification (TRAP) to detect actively translating mRNAs in wild type and CREB-deficient mice. Using CrebloxP/loxP; RosaLSL-GFP-L10a mice, we conducted whole genome sequencing to identify transcripts only in cells that lack CREB, as introduction of Cre-recombinase simultaneously deleted CREB and expressed GFP-tagged L10a ribosomes that enabled TRAP. We identified over 200 downregulated genes predominantly associated with inflammation and the immune system, including toll-like receptor 1 (TLR1). To determine if baseline disruption in gene expression in the hippocampus of CREB-deficient mice can modulate behavior, we used unpredictable chronic mild stress (UCMS) to produce a set of behavioral alterations with strong validity for depression. We found that CREB-deficient mice demonstrated resilience to the physiological effects of UCMS and also showed changes in affective behaviors specifically in the presence of stress. TLR1 expression was increased following UCMS in control but not in CREB-deficient mice. The results suggest that CREB-mediated regulation of immune system and inflammatory factors may provide additional targets for the treatment of depression.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Inflamação/metabolismo , Estresse Psicológico/metabolismo , Animais , Antidepressivos/farmacologia , Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Inflamação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Estresse Psicológico/genética , Lobo Temporal/metabolismo , Receptor 1 Toll-Like/efeitos dos fármacos , Receptor 1 Toll-Like/metabolismo
9.
Stress ; 22(1): 142-150, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30457440

RESUMO

Chronic administration of nicotine or exposure to stress can produce long-lasting behavioral and physiological changes in humans and animals alike. Further, the impact of nicotine and stress exposure can be inherited by offspring to produce persistent changes in physiology and behavior. To determine if nicotine and stress interact across generations to influence offspring behavior we exposed F0 male mice to nicotine and F1 male and female mice to chronic unpredictable stress during adolescence. We then measured locomotor sensitization to repeated nicotine injections in the subsequent F2 and F3 generations. Stress exposure alone (F1) did not influence locomotor sensitization in any lineage. However, in the F1 male lineage, F0 nicotine exposure abrogated locomotor sensitization in F2 male and transiently enhanced locomotor sensitization in F2 female offspring. These effects were not passed down to the F3 generations or observed in the F1 female lineage. F1 stress exposure modulated the effects of prior F0 nicotine exposure in a sex-dependent manner. Specifically, stress blunted the nicotine-induced enhancement in locomotor sensitization observed in F2 female offspring of F1 males. The effect of F0 nicotine and F1 stress exposure in females appears to have skipped a generation and enhanced nicotine sensitization only in the F3 generation, and only in females. This novel multigenerational exposure paradigm examining the inheritance of two different environmental exposures demonstrates that nicotine responses can be modified by nicotine and stress exposure from previous generations, and these effects are strongly influenced by sex.


Assuntos
Nicotina/farmacologia , Estresse Psicológico/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Distribuição Aleatória
10.
J Neurosci ; 35(8): 3582-90, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716856

RESUMO

A single nucleotide polymorphism (SNP) in the human µ-opioid receptor gene (OPRM1 A118G) has been widely studied for its association in drug addiction, pain sensitivity, and, more recently, social behavior. The endogenous opioid system has been shown to regulate social distress and reward in a variety of animal models. However, mechanisms underlying the associations between the OPRM1 A118G SNP and these behaviors have not been clarified. We used a mouse model possessing the human equivalent nucleotide/amino acid substitution to study social affiliation and social defeat behaviors. In mice with the Oprm1 A112G SNP, we demonstrate that the G allele is associated with an increase in home-cage dominance and increased motivation for nonaggressive social interactions, similar to what is reported in human populations. When challenged by a resident aggressor, G-allele carriers expressed less submissive behavior and exhibited resilience to social defeat, demonstrated by a lack of subsequent social avoidance and reductions in anhedonia as measured by intracranial self-stimulation. Protection from social defeat in G-allele carriers was associated with a greater induction of c-fos in a resilience circuit comprising the nucleus accumbens and periaqueductal gray. These findings led us to test the role of endogenous opioids in the A112G mice. We demonstrate that the increase in social affiliation in G carriers is blocked by pretreatment with naloxone. Together, these data suggest a mechanism involving altered hedonic state and neural activation as well as altered endogenous opioid tone in the differential response to aversive and rewarding social stimuli in G-allele carriers.


Assuntos
Dominação-Subordinação , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Receptores Opioides mu/metabolismo , Agressão , Anedonia , Animais , Feminino , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/genética
11.
Learn Mem ; 22(2): 109-15, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25593297

RESUMO

The cAMP response element (CRE)-binding protein, CREB, is a transcription factor whose activity in the brain is critical for long-term memory formation. Phosphorylation of Ser133 in the kinase-inducible domain (KID), that in turn leads to the recruitment of the transcriptional coactivator CREB-binding protein (CBP), is thought to mediate the activation of CREB. However, the importance of phosphorylation for CREB binding to DNA and subsequent gene transcription in vivo is controversial. To definitively address the role of CREB phosphorylation in gene transcription and learning and memory, we derived mutant mice lacking the Ser133 phosphorylation site. These mice exhibit normal CREB-mediated gene transcription for a number of genes implicated in learning and memory processes. Furthermore these mice have no deficits in hippocampus- or striatum-dependent learning. Strikingly, our findings show that CREB phosphorylation at Ser133 is not necessary for CREB binding to CRE sites, CREB-mediated transcription, or CREB-mediated behavioral phenotypes associated with learning and memory.


Assuntos
Condicionamento Psicológico/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Medo/fisiologia , Hipocampo/metabolismo , Memória/fisiologia , Transcrição Gênica , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Serina/genética , Ativação Transcricional
12.
Nicotine Tob Res ; 17(12): 1428-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25744957

RESUMO

INTRODUCTION: Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. METHODS: This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNF(Met/Met)) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. RESULTS: Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNF(Met/Met) mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNF(Met/Met) mice; and (3) an increase in BDNF prodomain in BDNF(Met/Met) mice following nicotine withdrawal. CONCLUSIONS: Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNF(Met/Met) mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal.


Assuntos
Ansiedade/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Metionina/genética , Nicotina/administração & dosagem , Síndrome de Abstinência a Substâncias/genética , Valina/genética , Animais , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único/genética , Síndrome de Abstinência a Substâncias/psicologia , Tabagismo/genética , Tabagismo/psicologia
13.
Proc Natl Acad Sci U S A ; 109(52): 21516-21, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236174

RESUMO

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in neurodevelopmental disorders including atypical Rett syndrome (RTT), autism spectrum disorders (ASDs), and early infantile epileptic encephalopathy. The biological function of CDKL5 and its role in the etiology of these disorders, however, remain unclear. Here we report the development of a unique knockout mouse model of CDKL5-related disorders and demonstrate that mice lacking CDKL5 show autistic-like deficits in social interaction, as well as impairments in motor control and fear memory. Neurophysiological recordings reveal alterations in event-related potentials (ERPs) similar to those observed in RTT and ASDs. Moreover, kinome profiling uncovers disruption of multiple signal transduction pathways, including the AKT-mammalian target of rapamycin (mTOR) cascade, upon Cdkl5 loss-of-function. These data demonstrate that CDKL5 regulates signal transduction pathways and mediates autistic-like phenotypes and together establish a causal role for Cdkl5 loss-of-function in neurodevelopmental disorders.


Assuntos
Transtorno Autístico/enzimologia , Transtorno Autístico/fisiopatologia , Potenciais Evocados/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , Proteoma/metabolismo , Animais , Ansiedade/complicações , Ansiedade/enzimologia , Ansiedade/fisiopatologia , Transtorno Autístico/complicações , Comportamento Animal , Eletroencefalografia , Hipercinese/complicações , Hipercinese/enzimologia , Hipercinese/fisiopatologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Convulsões/complicações , Convulsões/fisiopatologia , Transdução de Sinais , Comportamento Social , Serina-Treonina Quinases TOR/metabolismo
14.
J Neurosci ; 33(34): 13673-85, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966689

RESUMO

The transcription factor cAMP response element-binding protein (CREB) has been implicated in the pathophysiology of depression as well as in the efficacy of antidepressant treatment. However, altering CREB levels appears to have differing effects on anxiety- and depression-related behaviors, depending on which brain region is examined. Furthermore, many manipulations of CREB lead to corresponding changes in other CREB family proteins, and the impact of these changes has been largely ignored. To further investigate the region-specific importance of CREB in depression-related behavior and antidepressant response, we used Creb(loxP/loxP) mice to localize CREB deletion to the hippocampus. In an assay sensitive to chronic antidepressant response, the novelty-induced hypophagia procedure, hippocampal CREB deletion, did not alter the response to chronic antidepressant treatment. In contrast, mice with hippocampal CREB deletion responded to acute antidepressant treatment in this task, and this accelerated response was accompanied by an increase in hippocampal neurogenesis. Upregulation of the CREB-family protein cAMP response-element modulator (CREM) was observed after CREB deletion. Viral overexpression of the activator isoform of CREM, CREMτ, in the hippocampus also resulted in an accelerated response to antidepressants as well as increased hippocampal neurogenesis. This is the first demonstration of CREMτ within the brain playing a role in behavior and specifically in behavioral outcomes following antidepressant treatment. The current results suggest that activation of CREMτ may provide a means to accelerate the therapeutic efficacy of current antidepressant treatment.


Assuntos
Antidepressivos/farmacologia , Proteína de Ligação a CREB/deficiência , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Hipocampo , Neurogênese/efeitos dos fármacos , Animais , Bromodesoxiuridina/metabolismo , Proteína de Ligação a CREB/genética , Modulador de Elemento de Resposta do AMP Cíclico/genética , Dependovirus/genética , Dependovirus/metabolismo , Desipramina/uso terapêutico , Proteínas do Domínio Duplacortina , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Medo/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microinjeções , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neurogênese/genética , Neuropeptídeos/metabolismo , Natação/psicologia , Fatores de Tempo
15.
J Neurochem ; 129(4): 721-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24422997

RESUMO

Chronic nicotine administration increases the density of brain α4ß2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4ß2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4ß2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking.


Assuntos
Ansiolíticos/uso terapêutico , Ansiedade/prevenção & controle , Azetidinas/uso terapêutico , Química Encefálica/efeitos dos fármacos , Nicotina/toxicidade , Agonistas Nicotínicos/uso terapêutico , Piridinas/uso terapêutico , Receptores Nicotínicos/biossíntese , Síndrome de Abstinência a Substâncias/prevenção & controle , Tabagismo/tratamento farmacológico , Animais , Ansiolíticos/administração & dosagem , Ansiolíticos/farmacologia , Ansiedade/induzido quimicamente , Azetidinas/administração & dosagem , Azetidinas/farmacologia , Benzazepinas/administração & dosagem , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Quinoxalinas/administração & dosagem , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/genética , Abandono do Uso de Tabaco , Tabagismo/metabolismo , Regulação para Cima/efeitos dos fármacos , Vareniclina , Aumento de Peso/efeitos dos fármacos
16.
J Neurochem ; 129(5): 850-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24460902

RESUMO

Aberrant expression and activation of the cell cycle protein E2F1 in neurons has been implicated in many neurodegenerative diseases. As a transcription factor regulating G1 to S phase progression in proliferative cells, E2F1 is often up-regulated and activated in models of neuronal death. However, despite its well-studied functions in neuronal death, little is known regarding the role of E2F1 in the mature brain. In this study, we used a combined approach to study the effect of E2F1 gene disruption on mouse behavior and brain biochemistry. We identified significant age-dependent olfactory and memory-related deficits in E2f1 mutant mice. In addition, we found that E2F1 exhibits punctated staining and localizes closely to the synapse. Furthermore, we found a mirroring age-dependent loss of post-synaptic protein-95 in the hippocampus and olfactory bulb as well as a global loss of several other synaptic proteins. Coincidently, E2F1 expression is significantly elevated at the ages, in which behavioral and synaptic perturbations were observed. Finally, we show that deficits in adult neurogenesis persist late in aged E2f1 mutant mice which may partially contribute to the behavior phenotypes. Taken together, our data suggest that the disruption of E2F1 function leads to specific age-dependent behavioral deficits and synaptic perturbations. E2F1 is a transcription factor regulating cell cycle progression and apoptosis. Although E2F1 dysregulation under toxic conditions can lead to neuronal death, little is known about its physiologic activity in the healthy brain. Here, we report significant age-dependent olfactory and memory deficits in mice with dysfunctional E2F1. Coincident with these behavioral changes, we also found age-matched synaptic disruption and persisting reduction in adult neurogenesis. Our study demonstrates that E2F1 contributes to physiologic brain structure and function.


Assuntos
Envelhecimento/genética , Envelhecimento/psicologia , Comportamento Animal/fisiologia , Fator de Transcrição E2F1/genética , Mutação/genética , Sinapses/patologia , Animais , Western Blotting , Células Cultivadas , Marcação de Genes , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Memória/fisiologia , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Odorantes , Transtornos do Olfato/genética , Transtornos do Olfato/psicologia , Equilíbrio Postural/genética , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico , Olfato/genética , Olfato/fisiologia , Sinaptossomos/fisiologia
17.
J Pharmacol Exp Ther ; 349(2): 348-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24627467

RESUMO

Although nicotine mediates its effects through several nicotinic acetylcholine receptor (nAChR) subtypes, it remains to be determined which nAChR subtypes directly mediate heightened anxiety during withdrawal. Relative success in abstinence has been found with the nAChR partial agonist varenicline (Chantix; Pfizer, Groton, CT); however, treatment with this drug fails to alleviate anxiety in individuals during nicotine withdrawal. Therefore, it is hypothesized that success can be found by the repurposing of other nAChR partial agonists for cessation therapies that target anxiety. It is noteworthy that the selective partial agonists for α4ß2, ABT-089 [2-methyl-3-[2(S)-pyrrolidinylmethoxy]pyridine], and α7, ABT-107 [5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole] (AbbVie, North Chicago, IL), have not been evaluated as possible therapeutics for nicotine cessation. Therefore, we examined the effect of ABT-089 and ABT-107 on anxiety during withdrawal from nicotine in the novelty-induced hypophagia (NIH) paradigm. We found that short-term administration of ABT-089 and ABT-107 alleviate anxiety-like behavior during withdrawal from nicotine while long-term administration of ABT-089 but not ABT-107 reduces anxiety-like behavior during withdrawal. After behavioral testing, brains were harvested and ß2-containing nAChRs were measured using [(3)H]epibaditine. ABT-089 and ABT-107 do not upregulate nAChRs, which is in contrast to the upregulation of nAChRs observed after nicotine. Furthermore, ABT-089 is anxiogenic in nicotine naive animals, suggesting that the effects on anxiety are specifically related to the nicotine-dependent state. Together, these studies identify additional nAChR partial agonists that may aid in the rational development of smoking cessation aids.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Indóis/farmacologia , Nicotina/efeitos adversos , Agonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Quinuclidinas/farmacologia , Receptores Nicotínicos/metabolismo , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Animais , Ansiolíticos/uso terapêutico , Ansiedade/metabolismo , Ansiedade/psicologia , Encéfalo/metabolismo , Agonismo Parcial de Drogas , Indóis/uso terapêutico , Masculino , Camundongos , Agonistas Nicotínicos/uso terapêutico , Piridinas/uso terapêutico , Pirrolidinas/uso terapêutico , Quinuclidinas/uso terapêutico , Ensaio Radioligante , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/psicologia , Fatores de Tempo , Regulação para Cima
18.
Addict Biol ; 19(3): 354-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-22862850

RESUMO

The A118G single nucleotide polymorphism (SNP) of the human µ-opioid receptor (MOPR) gene (OPRM1) was associated with heightened dopamine release by alcohol intake, better treatment outcome for nicotine and alcohol addiction, and reduced analgesic responses to morphine. A mouse model that possesses the equivalent substitution (A112G) in the mouse MOPR gene (OPRM1) was generated to delineate the mechanisms of the impact of the SNP. Mice homozygous for the G112 allele (G/G) displayed lower morphine-induced antinociception than mice homozygous for the A112 allele (A/A), similar to the results in humans. In this study, we examined whether A112G SNP affected MOPR-mediated G protein activation in the mouse model. We compared A/A and G/G mice in the MOPR-selective agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO)-stimulated [(35) S]GTPγS binding in brain regions by autoradiography. When the data of males and females were combined, G/G mice exhibited lower DAMGO-stimulated [(35) S]GTPγS binding in the ventral tegmental area than A/A mice, in accord with the previously reported reduced morphine-induced hyperactivity and locomotor sensitization in G/G mice. In the nucleus accumbens (NAc) core, female G/G mice displayed lower DAMGO-stimulated [(35) S]GTPγS binding than female A/A mice, which is consistent with the previously reported deficiency in morphine-induced conditioned place preference in female G/G mice. In G/G mice, males showed higher DAMGO-stimulated [(35) S]GTPγS binding than females in the cingulate cortex, caudate putamen, NAc core, thalamus and amygdala. Thus, A112G SNP affects DAMGO-stimulated [(35) S]GTPγS binding in region- and sex-specific manners.


Assuntos
Encéfalo/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Receptores Opioides mu/genética , Analgésicos Opioides/farmacologia , Animais , Autorradiografia , Condicionamento Psicológico/efeitos dos fármacos , Feminino , Homozigoto , Hipercinese/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Nociceptividade/efeitos dos fármacos , Caracteres Sexuais
19.
Proc Natl Acad Sci U S A ; 108(22): 9268-73, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21576462

RESUMO

Evidence points to the endogenous opioid system, and the mu-opioid receptor (MOR) in particular, in mediating the rewarding effects of drugs of abuse, including nicotine. A single nucleotide polymorphism (SNP) in the human MOR gene (OPRM1 A118G) has been shown to alter receptor protein level in preclinical models and smoking behavior in humans. To clarify the underlying mechanisms for these associations, we conducted an in vivo investigation of the effects of OPRM1 A118G genotype on MOR binding potential (BP(ND) or receptor availability). Twenty-two smokers prescreened for genotype (12 A/A, 10 */G) completed two [(11)C]carfentanil positron emission tomography (PET) imaging sessions following overnight abstinence and exposure to a nicotine-containing cigarette and a denicotinized cigarette. Independent of session, smokers homozygous for the wild-type OPRM1 A allele exhibited significantly higher levels of MOR BP(ND) than smokers carrying the G allele in bilateral amygdala, left thalamus, and left anterior cingulate cortex. Among G allele carriers, the extent of subjective reward difference (denicotinized versus nicotine cigarette) was associated significantly with MOR BP(ND) difference in right amygdala, caudate, anterior cingulate cortex, and thalamus. Future translational investigations can elucidate the role of MORs in nicotine addiction, which may lead to development of novel therapeutics.


Assuntos
Encéfalo/metabolismo , Polimorfismo Genético , Receptores Opioides mu/genética , Fumar/efeitos adversos , Adulto , Mapeamento Encefálico/métodos , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Nicotina/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Nicotiana
20.
Trends Neurosci ; 47(5): 367-382, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614891

RESUMO

Neonatal opioid withdrawal syndrome (NOWS) is a growing public health concern. The complexity of in utero opioid exposure in clinical studies makes it difficult to investigate underlying mechanisms that could ultimately inform early diagnosis and treatments. Clinical studies are unable to dissociate the influence of maternal polypharmacy or the environment from direct effects of in utero opioid exposure, highlighting the need for effective animal models. Early animal models of prenatal opioid exposure primarily used the prototypical opioid, morphine, and opioid exposure that was often limited to a narrow period during gestation. In recent years, the number of preclinical studies has grown rapidly. Newer models utilize both prescription and nonprescription opioids and vary the onset and duration of opioid exposure. In this review, we summarize novel prenatal opioid exposure models developed in recent years and attempt to reconcile results between studies while critically identifying gaps within the current literature.


Assuntos
Analgésicos Opioides , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Animais , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Gravidez , Feminino , Analgésicos Opioides/efeitos adversos , Humanos , Síndrome de Abstinência Neonatal , Transtornos Relacionados ao Uso de Opioides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA