Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Glycobiology ; 32(7): 600-615, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35323921

RESUMO

Lectins are non-immunoglobulin-type proteins that bind to specific carbohydrate epitopes and play important roles in intra- and inter-organismic interactions. Here, we describe a novel fucose-specific lectin, termed CML1, which we identified from fruiting body extracts of Coprinopsis cinerea. For further characterization, the coding sequence for CML1 was cloned and heterologously expressed in Escherichia coli. Feeding of CML1-producing bacteria inhibited larval development of the bacterivorous nematode Caenorhabditis tropicalis, but not of C. elegans. The crystal structure of the recombinant protein in its apo-form and in complex with H type I or Lewis A blood group antigens was determined by X-ray crystallography. The protein folds as a sandwich of 2 antiparallel ß-sheets and forms hexamers resulting from a trimer of dimers. The hexameric arrangement was confirmed by small-angle X-ray scattering (SAXS). One carbohydrate-binding site per protomer was found at the dimer interface with both protomers contributing to ligand binding, resulting in a hexavalent lectin. In terms of lectin activity of recombinant CML1, substitution of the carbohydrate-interacting residues His54, Asn55, Trp94, and Arg114 by Ala abolished carbohydrate-binding and nematotoxicity. Although no similarities to any characterized lectin were found, sequence alignments identified many non-characterized agaricomycete proteins. These results suggest that CML1 is the founding member of a novel family of fucoside-binding lectins involved in the defense of agaricomycete fruiting bodies against predation by fungivorous nematodes.


Assuntos
Caenorhabditis elegans , Proteínas Fúngicas , Agaricales , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Carboidratos , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Lectinas/química , Lectinas/genética , Lectinas/farmacologia , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Difração de Raios X
2.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242007

RESUMO

Resistance of fungi to predation is thought to be mediated by toxic metabolites and proteins. Many of these fungal defense effectors are highly abundant in the fruiting body and not produced in the vegetative mycelium. The defense function of fruiting body-specific proteins, however, including cytoplasmically localized lectins and antinutritional proteins such as biotin-binding proteins, is mainly based on toxicity assays using bacteria as a heterologous expression system, with bacterivorous/omnivorous model organisms as predators. Here, we present an ecologically more relevant experimental setup to assess the toxicity of potential fungal defense proteins towards the fungivorous, stylet-feeding nematodes Aphelenchus avenae and Bursaphelenchus okinawaensis As a heterologous expression host, we exploited the filamentous fungus Ashbya gossypii Using this new system, we assessed the toxicity of six previously characterized, cytoplasmically localized, potential defense proteins from fruiting bodies of different fungal phyla against the two fungivorous nematodes. We found that all of the tested proteins were toxic against both nematodes, albeit to various degrees. The toxicity of these proteins against both fungivorous and bacterivorous nematodes suggests that their targets have been conserved between the different feeding groups of nematodes and that bacterivorous nematodes are valid model organisms to assess the nematotoxicity of potential fungal defense proteins.IMPORTANCE Our results support the hypothesis that cytoplasmic proteins abundant in fungal fruiting bodies are involved in fungal resistance against predation. The toxicity of these proteins toward stylet-feeding nematodes, which are also capable of feeding on plants, and the abundance of these proteins in edible mushrooms, may open possible avenues for biological crop protection against parasitic nematodes, e.g., by expression of these proteins in crops.


Assuntos
Proteínas Fúngicas/toxicidade , Fungos/química , Tylenchida/efeitos dos fármacos , Animais , Comportamento Alimentar/efeitos dos fármacos , Carpóforos/química , Tylenchida/fisiologia
3.
Glycobiology ; 27(5): 486-500, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980000

RESUMO

Lectins are used as defense effector proteins against predators, parasites and pathogens by animal, plant and fungal innate defense systems. These proteins bind to specific glycoepitopes on the cell surfaces and thereby interfere with the proper cellular functions of the various antagonists. The exact cellular toxicity mechanism is in many cases unclear. Lectin CCL2 of the mushroom Coprinopsis cinerea was previously shown to be toxic for Caenorhabditis elegans and Drosophila melanogaster. This toxicity is dependent on a single, high-affinity binding site for the trisaccharide GlcNAc(Fucα1,3)ß1,4GlcNAc, which is a hallmark of nematode and insect N-glycan cores. The carbohydrate-binding site is located at an unusual position on the protein surface when compared to other ß-trefoil lectins. Here, we show that CCL2 forms a compact dimer in solution and in crystals. Substitution of two amino acid residues at the dimer interface, R18A and F133A, interfered with dimerization of CCL2 and reduced toxicity but left carbohydrate-binding unaffected. These results, together with the positioning of the two carbohydrate-binding sites on the surface of the protein dimer, suggest that crosslinking of N-glycoproteins on the surface of intestinal cells of invertebrates is a crucial step in the mechanism of CCL2-mediated toxicity. Comparisons of the number and positioning of carbohydrate-binding sites among different dimerizing fungal ß-trefoil lectins revealed a considerable variability in the carbohydrate-binding patterns of these proteins, which are likely to correlate with their respective functions.


Assuntos
Agaricales/química , Lectinas Tipo C/química , Trissacarídeos/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans/patogenicidade , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lectinas Tipo C/metabolismo , Polissacarídeos/genética , Polissacarídeos/metabolismo , Trissacarídeos/genética
4.
PLoS Pathog ; 8(5): e1002706, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615566

RESUMO

Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcß1,4[Fucα1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a ß-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to α1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate defence mechanism, whereby the monovalency of the lectin for its ligand implies a novel mechanism of lectin-mediated toxicity.


Assuntos
Agaricales/imunologia , Agaricales/metabolismo , Carpóforos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lectinas/química , Lectinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans , Drosophila melanogaster , Carpóforos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Lectinas/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência , Trissacarídeos/metabolismo
5.
J Biol Chem ; 287(6): 3898-907, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22167196

RESUMO

Cospin (PIC1) from Coprinopsis cinerea is a serine protease inhibitor with biochemical properties similar to those of the previously characterized fungal serine protease inhibitors, cnispin from Clitocybe nebularis and LeSPI from Lentinus edodes, classified in the family I66 of the MEROPS protease inhibitor classification. In particular, it exhibits a highly specific inhibitory profile as a very strong inhibitor of trypsin with K(i) in the picomolar range. Determination of the crystal structure revealed that the protein has a ß-trefoil fold. Site-directed mutagenesis and mass spectrometry results have confirmed Arg-27 as the reactive binding site for trypsin inhibition. The loop containing Arg-27 is positioned between the ß2 and ß3 strands, distinguishing cospin from other ß-trefoil-fold serine protease inhibitors in which ß4-ß5 or ß5-ß6 loops are involved in protease inhibition. Biotoxicity assays of cospin on various model organisms revealed a strong and specific entomotoxic activity against Drosophila melanogaster. The inhibitory inactive R27N mutant was not entomotoxic, associating toxicity with inhibitory activity. Along with the abundance of cospin in fruiting bodies of C. cinerea and the lack of trypsin-like proteases in the C. cinerea genome, these results suggest that cospin and its homologs are effectors of a fungal defense mechanism against fungivorous insects that function by specific inhibition of serine proteases in the insect gut.


Assuntos
Agaricales/química , Carpóforos/química , Proteínas Fúngicas/química , Inibidores da Tripsina/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
6.
J Biol Chem ; 287(34): 28276-90, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22733825

RESUMO

The modification of α1,6-linked fucose residues attached to the proximal (reducing-terminal) core N-acetylglucosamine residue of N-glycans by ß1,4-linked galactose ("GalFuc" epitope) is a feature of a number of invertebrate species including the model nematode Caenorhabditis elegans. A pre-requisite for both core α1,6-fucosylation and ß1,4-galactosylation is the presence of a nonreducing terminal N-acetylglucosamine; however, this residue is normally absent from the final glycan structure in invertebrates due to the action of specific hexosaminidases. Previously, we have identified two hexosaminidases (HEX-2 and HEX-3) in C. elegans, which process N-glycans. In the present study, we have prepared a hex-2;hex-3 double mutant, which possesses a radically altered N-glycomic profile. Whereas in the double mutant core α1,3-fucosylation of the proximal N-acetylglucosamine was abolished, the degree of galactosylation of core α1,6-fucose increased, and a novel Galα1,2Fucα1,3 moiety attached to the distal core N-acetylglucosamine residue was detected. Both galactosylated fucose moieties were also found in two parasitic nematodes, Ascaris suum and Oesophagostomum dentatum. As core modifications of N-glycans are known targets for fungal nematotoxic lectins, the sensitivity of the C. elegans double hexosaminidase mutant was assessed. Although this mutant displayed hypersensitivity to the GalFuc-binding lectin CGL2 and the N-acetylglucosamine-binding lectin XCL, the mutant was resistant to CCL2, which binds core α1,3-fucose. Thus, the use of C. elegans mutants aids the identification of novel N-glycan modifications and the definition of in vivo specificities of nematotoxic lectins with potential as anthelmintic agents.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Epitopos/metabolismo , Fucose/metabolismo , Hexosaminidases/metabolismo , Polissacarídeos/metabolismo , Acetilglucosamina/genética , Acetilglucosamina/metabolismo , Animais , Anti-Helmínticos/farmacologia , Ascaris suum/genética , Ascaris suum/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Desenho de Fármacos , Epitopos/genética , Fucose/genética , Galectina 2/farmacologia , Glicosilação , Hexosaminidases/genética , Mutação , Oesophagostomum/genética , Oesophagostomum/metabolismo , Polissacarídeos/genética
7.
J Biol Chem ; 286(35): 30337-30343, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757752

RESUMO

Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a Galα1,3Gal/GalNAc-specific lectin from the fairy ring mushroom that consists of an N-terminal ricin B-type lectin domain and a C-terminal dimerization domain. The latter domain shows structural similarity to catalytically active proteins, suggesting that, in addition to its carbohydrate-binding activity, MOA has an enzymatic function. Here, we demonstrate toxicity of MOA toward the model nematode Caenorhabditis elegans. This toxicity depends on binding of MOA to glycosphingolipids of the worm via its lectin domain. We show further that MOA has cysteine protease activity and demonstrate a critical role of this catalytic function in MOA-mediated nematotoxicity. The proteolytic activity of MOA was dependent on high Ca(2+) concentrations and favored by slightly alkaline pH, suggesting that these conditions trigger activation of the toxin at the target location. Our results suggest that MOA is a fungal toxin with intriguing similarities to bacterial binary toxins and has a protective function against fungivorous soil nematodes.


Assuntos
Aglutininas/química , Cisteína Proteases/química , Glicolipídeos/química , Lectinas/química , Marasmius/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans , Cálcio/química , Catálise , Dimerização , Deleção de Genes , Glicoesfingolipídeos/química , Concentração de Íons de Hidrogênio , Ligantes , Mutação , Ligação Proteica , Estrutura Terciária de Proteína
8.
Appl Environ Microbiol ; 78(23): 8485-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001676

RESUMO

Tamavidins are fungal biotin-binding proteins (BBPs) displaying antifungal activity against phytopathogens. Here we show high toxicity of tamavidins toward nematodes, insects, and amoebae. As these organisms represent important phyla of fungal predators and parasites, we propose that BBPs are part of the chemical defense system of fungi.


Assuntos
Agaricales/metabolismo , Antibiose , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Parasitos/efeitos dos fármacos , Amoeba/efeitos dos fármacos , Animais , Insetos/efeitos dos fármacos , Nematoides/efeitos dos fármacos
9.
Parasit Vectors ; 8: 425, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26283415

RESUMO

BACKGROUND: Lectins are carbohydrate-binding proteins that are involved in fundamental intra- and extracellular biological processes. They occur ubiquitously in nature and are especially abundant in plants and fungi. It has been well established that certain higher fungi produce lectins in their fruiting bodies and/or sclerotia as a part of their natural resistance against free-living fungivorous nematodes and other pests. Despite relatively high diversity of the glycan structures in nature, many of the glycans targeted by fungal lectins are conserved among organisms of the same taxon and sometimes even among different taxa. Such conservation of glycans between free-living and parasitic nematodes is providing us with a useful tool for discovery of novel chemotherapeutic and vaccine targets. In our study, a subset of fungal lectins emanating from toxicity screens on Caenorhabditis elegans was tested for their potential to inhibit larval development of Haemonchus contortus. METHODS: The effect of Coprinopsis cinerea lectins - CCL2, CGL2, CGL3; Aleuria aurantia lectin - AAL; Marasmius oreades agglutinin - MOA; and Laccaria bicolor lectin - Lb-Tec2, on cultivated Haemonchus contortus larval stages was investigated using a larval development test (LDT). To validate the results of the toxicity assay and determine lectin binding capacity to the nematode digestive tract, biotinylated versions of lectins were fed to pre-infective larval stages of H. contortus and visualized by fluorescent microscopy. Lectin histochemistry on fixed adult worms was performed to investigate the presence and localisation of lectin binding sites in the disease-relevant developmental stage. RESULTS: Using an improved larval development test we found that four of the six tested lectins: AAL, CCL2, MOA and CGL2, exhibited a dose-dependent toxicity in LDT, as measured by the number of larvae developing to the L3 stage. In the case of AAL, CGL2 and MOA lectin, doses as low as 5 µg/ml caused >95 % inhibition of larval development while 40 µg/ml were needed to achieve the same inhibition by CCL2 lectin. MOA was the only lectin tested that caused larval death while other toxic lectins had larvistatic effect manifesting as L1 growth arrest. Using lectin histochemistry we demonstrate that of all lectins tested, only the four toxic ones displayed binding to the larvae's gut and likewise were found to interact with glycans localized to the gastrodermal tissue of adults. CONCLUSION: The results of our study suggest a correlation between the presence of target glycans of lectins in the digestive tract and the lectin-mediated toxicity in Haemonchus contortus. We demonstrate that binding to the structurally conserved glycan structures found in H. contortus gastrodermal tissue by the set of fungal lectins has detrimental effect on larval development. Some of these glycan structures might represent antigens which are not exposed to the host immune system (hidden antigens) and thus have a potential for vaccine or drug development. Nematotoxic fungal lectins prove to be a useful tool to identify such targets in parasitic nematodes.


Assuntos
Agaricales/química , Anti-Helmínticos/farmacologia , Ascomicetos/química , Haemonchus/efeitos dos fármacos , Haemonchus/crescimento & desenvolvimento , Lectinas/farmacologia , Animais , Anti-Helmínticos/isolamento & purificação , Trato Gastrointestinal/química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Lectinas/isolamento & purificação , Ligação Proteica
10.
FEBS J ; 281(15): 3489-506, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24930858

RESUMO

UNLABELLED: Lectins are carbohydrate-binding proteins present in all organisms. Some cytoplasmic lectins from fruiting bodies of dikaryotic fungi are toxic against a variety of parasites and predators. We have isolated, cloned and expressed a novel, single domain lectin from Macrolepiota procera, designated MpL. Determination of the crystal structure revealed that MpL is a ricin B-like lectin with a ß-trefoil fold. Biochemical characterization, site-directed mutagenesis, co-crystallization with carbohydrates, isothermal titration calorimetry and glycan microarray analyses show that MpL forms dimers with the carbohydrate-binding site at the α-repeat, with the highest specificity for terminal N-acetyllactosamine and other ß-galactosides. A second putative carbohydrate-binding site with a low affinity for galactose is present at the γ-repeat. In addition, a novel hydrophobic binding site was detected in MpL with specificity for molecules other than carbohydrates. The tissue specific distribution of MpL in the stipe and cap tissue of fruiting bodies and its toxicity towards the nematode Caenorhabditis elegans indicate a function of MpL in protecting fruiting bodies against predators and parasites. DATABASE: Nucleotide sequence data have been deposited in the DDBJ/EMBL/GenBank databases under accession numbers HQ449738 and HQ449739. Structural data have been deposited in the Protein Data Bank under accession codes 4ION, 4IYB, 4IZX and 4J2S.


Assuntos
Agaricales/metabolismo , Antinematódeos/química , Proteínas Fúngicas/química , Lectinas/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Sítios de Ligação , Caenorhabditis elegans/efeitos dos fármacos , Sequência de Carboidratos , Cristalografia por Raios X , Carpóforos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Ligação de Hidrogênio , Lectinas/metabolismo , Lectinas/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Polissacarídeos/química , Ligação Proteica , Estrutura Secundária de Proteína
11.
Methods Enzymol ; 480: 141-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20816208

RESUMO

Recent studies suggest that a specific class of fungal lectins, commonly referred to as fruiting body lectins, play a role as effector molecules in the defense of fungi against predators and parasites. Hallmarks of these fungal lectins are their specific expression in reproductive structures, fruiting bodies, and/or sclerotia and their synthesis on free ribosomes in the cytoplasm. Fruiting body lectins are released upon damage of the fungal cell and bind to specific carbohydrate structures of predators and parasites, which leads to deterrence, inhibition of growth, and development or even killing of these organisms. Here, we describe assays to assess the toxicity of such lectins and other cytoplasmic proteins toward three different model organisms: the insect Aedes aegypti, the nematode Caenorhabditis elegans, and the amoeba Acanthamoeba castellanii. All three assays are based on heterologous expression of the examined proteins in the cytoplasm of Escherichia coli and feeding of these recombinant bacteria to omnivorous and bacterivorous organisms.


Assuntos
Citoplasma/química , Carpóforos/química , Proteínas Fúngicas/toxicidade , Lectinas/toxicidade , Testes de Toxicidade/métodos , Acanthamoeba castellanii , Aedes , Animais , Caenorhabditis elegans , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Carpóforos/genética , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Lectinas/análise , Lectinas/genética , Lectinas/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
PLoS One ; 4(7): e6364, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19629182

RESUMO

BACKGROUND: Reef-building corals live in symbiosis with a diverse range of dinoflagellate algae (genus Symbiodinium) that differentially influence the fitness of the coral holobiont. The comparative role of symbiont type in holobiont fitness in relation to host genotype or the environment, however, is largely unknown. We addressed this knowledge gap by manipulating host-symbiont combinations and comparing growth, survival and thermal tolerance among the resultant holobionts in different environments. METHODOLOGY/PRINCIPAL FINDINGS: Offspring of the coral, Acropora millepora, from two thermally contrasting locations, were experimentally infected with one of six Symbiodinium types, which spanned three phylogenetic clades (A, C and D), and then outplanted to the two parental field locations (central and southern inshore Great Barrier Reef, Australia). Growth and survival of juvenile corals were monitored for 31-35 weeks, after which their thermo-tolerance was experimentally assessed. Our results showed that: (1) Symbiodinium type was the most important predictor of holobiont fitness, as measured by growth, survival, and thermo-tolerance; (2) growth and survival, but not heat-tolerance, were also affected by local environmental conditions; and (3) host population had little to no effect on holobiont fitness. Furthermore, coral-algal associations were established with symbiont types belonging to clades A, C and D, but three out of four symbiont types belonging to clade C failed to establish a symbiosis. Associations with clade A had the lowest fitness and were unstable in the field. Lastly, Symbiodinium types C1 and D were found to be relatively thermo-tolerant, with type D conferring the highest tolerance in A. millepora. CONCLUSIONS/SIGNIFICANCE: These results highlight the complex interactions that occur between the coral host, the algal symbiont, and the environment to shape the fitness of the coral holobiont. An improved understanding of the factors affecting coral holobiont fitness will assist in predicting the responses of corals to global climate change.


Assuntos
Antozoários/fisiologia , Simbiose , Animais , Antozoários/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA