Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Microb Cell Fact ; 23(1): 62, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402147

RESUMO

BACKGROUND: 1,2-propanediol (1,2-PDO) is widely used in the cosmetic, food, and drug industries with a worldwide consumption of over 1.5 million metric tons per year. Although efforts have been made to engineer microbial hosts such as Corynebacterium glutamicum to produce 1,2-PDO from renewable resources, the performance of such strains is still improvable to be competitive with existing petrochemical production routes. RESULTS: In this study, we enabled 1,2-PDO production in the genome-reduced strain C. glutamicum PC2 by introducing previously described modifications. The resulting strain showed reduced product formation but secreted 50 ± 1 mM D-lactate as byproduct. C. glutamicum PC2 lacks the D-lactate dehydrogenase which pointed to a yet unknown pathway relevant for 1,2-PDO production. Further analysis indicated that in C. glutamicum methylglyoxal, the precursor for 1,2-PDO synthesis, is detoxified with the antioxidant native mycothiol (MSH) by a glyoxalase-like system to lactoylmycothiol and converted to D-lactate which is rerouted into the central carbon metabolism at the level of pyruvate. Metabolomics of cell extracts of the empty vector-carrying wildtype, a 1,2-PDO producer and its derivative with inactive D-lactate dehydrogenase identified major mass peaks characteristic for lactoylmycothiol and its precursors MSH and glucosaminyl-myo-inositol, whereas the respective mass peaks were absent in a production strain with inactivated MSH synthesis. Deletion of mshA, encoding MSH synthase, in the 1,2-PDO producing strain C. glutamicum ΔhdpAΔldh(pEKEx3-mgsA-yqhD-gldA) improved the product yield by 56% to 0.53 ± 0.01 mM1,2-PDO mMglucose-1 which is the highest value for C. glutamicum reported so far. CONCLUSIONS: Genome reduced-strains are a useful basis to unravel metabolic constraints for strain engineering and disclosed in this study the pathway to detoxify methylglyoxal which represents a precursor for 1,2-PDO production. Subsequent inactivation of the competing pathway significantly improved the 1,2-PDO yield.


Assuntos
Corynebacterium glutamicum , Propilenoglicol , Propilenoglicóis , Propilenoglicol/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Aldeído Pirúvico/metabolismo , Lactatos/metabolismo , Engenharia Metabólica
2.
Metab Eng ; 55: 220-230, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31319152

RESUMO

Gasification is a suitable technology to generate energy-rich synthesis gas (syngas) from biomass or waste streams, which can be utilized in bacterial fermentation processes for the production of chemicals and fuels. Established microbial processes currently rely on acetogenic bacteria which perform an energetically inefficient anaerobic CO oxidation and acetogenesis potentially hampering the biosynthesis of complex and ATP-intensive products. Since aerobic oxidation of CO is energetically more favorable, we exploit in this study the Gram-negative ß-proteobacterium Hydrogenophaga pseudoflava DSM1084 as novel host for the production of chemicals from syngas. We sequenced and annotated the genome of H. pseudoflava and established a genetic engineering toolbox, which allows markerless chromosomal modification via the pk19mobsacB system and heterologous gene expression on pBBRMCS2-based plasmids. The toolbox was extended by identifying strong endogenous promotors such as PgapA2 which proved to yield high expression under heterotrophic and autotrophic conditions. H. pseudoflava showed relatively fast heterotrophic growth in complex and minimal medium with sugars and organic acids which allows convenient handling in lab routines. In autotrophic bioreactor cultivations with syngas, H. pseudoflava exhibited a growth rate of 0.06 h-1 and biomass specific uptakes rates of 14.2 ±â€¯0.3 mmol H2 gCDW-1 h-1, 73.9 ±â€¯1.8 mmol CO gCDW-1 h-1, and 31.4 ±â€¯0.3 mmol O2 gCDW-1 h-1. As proof of concept, we engineered the carboxydotrophic bacterium for the aerobic production of the C15 sesquiterpene (E)-α-bisabolene from the C1 carbon source syngas by heterologous expression of the (E)-α-bisabolene synthase gene agBIS. The resulting strain H. pseudoflava (pOCEx1:agBIS) produced 59 ±â€¯8 µg (E)-α-bisabolene L-1 with a volumetric productivity Qp of 1.2 ±â€¯0.2 µg L-1 h-1 and a biomass-specific productivity qp of 13.1 ±â€¯0.6 µg gCDW-1 h-1. The intrinsic properties and the genetic repertoire of H. pseudoflava make this carboxydotrophic bacterium a promising candidate for future aerobic production processes to synthesize more complex or ATP-intensive chemicals from syngas.


Assuntos
Reatores Biológicos , Monóxido de Carbono/metabolismo , Comamonadaceae , Genoma Bacteriano , Microrganismos Geneticamente Modificados , Sesquiterpenos Monocíclicos/metabolismo , Aerobiose , Biomassa , Comamonadaceae/genética , Comamonadaceae/crescimento & desenvolvimento , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Oxirredução
3.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253674

RESUMO

The fast-growing marine bacterium Vibrio natriegens represents an emerging strain for molecular biology and biotechnology. Genome sequencing and quantitative PCR analysis revealed that the first chromosome of V. natriegens ATCC 14048 contains two prophage regions (VNP1 and VNP2) that are both inducible by the DNA-damaging agent mitomycin C and exhibit spontaneous activation under standard cultivation conditions. Their activation was also confirmed by live cell imaging of an mCherry fusion to the major capsid proteins of VNP1 and VNP2. Transmission electron microscopy visualized the release of phage particles belonging to the Siphoviridae family into the culture supernatant. Freeing V. natriegens from its proviral load, followed by phenotypic characterization, revealed an improved robustness of the prophage-free variant toward DNA-damaging conditions, reduced cell lysis under hypo-osmotic conditions, and an increased pyruvate production compared to wild-type levels. Remarkably, the prophage-free strain outcompeted the wild type in a competitive growth experiment, emphasizing that this strain is a promising platform for future metabolic engineering approaches.IMPORTANCE The fast-growing marine bacterium Vibrio natriegens represents an emerging model host for molecular biology and biotechnology, featuring a reported doubling time of less than 10 minutes. In many bacterial species, viral DNA (prophage elements) may constitute a considerable fraction of the whole genome and may have detrimental effects on the growth and fitness of industrial strains. Genome analysis revealed the presence of two prophage regions in the V. natriegens genome that were shown to undergo spontaneous induction under standard cultivation conditions. In this study, we generated a prophage-free variant of V. natriegens Remarkably, the prophage-free strain exhibited a higher tolerance toward DNA damage and hypo-osmotic stress. Moreover, it was shown to outcompete the wild-type strain in a competitive growth experiment. In conclusion, our study presents the prophage-free variant of V. natriegens as a promising platform strain for future biotechnological applications.


Assuntos
Dano ao DNA , Pressão Osmótica , Prófagos/fisiologia , Vibrio/fisiologia , Vibrio/virologia
4.
Metab Eng ; 47: 31-41, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29522826

RESUMO

Evolutionary approaches are often undirected and mutagen-based yielding numerous mutations, which need elaborate screenings to identify relevant targets. We here apply Metabolic engineering to Guide Evolution (MGE), an evolutionary approach evolving and identifying new targets to improve microbial producer strains. MGE is based on the idea to impair the cell's metabolism by metabolic engineering, thereby generating guided evolutionary pressure. It consists of three distinct phases: (i) metabolic engineering to create the evolutionary pressure on the applied strain followed by (ii) a cultivation phase with growth as straightforward screening indicator for the evolutionary event, and (iii) comparative whole genome sequencing (WGS), to identify mutations in the evolved strains, which are eventually re-engineered for verification. Applying MGE, we evolved the PEP and pyruvate carboxylase-deficient strain C. glutamicum Δppc Δpyc to grow on glucose as substrate with rates up to 0.31 ±â€¯0.02 h-1 which corresponds to 80% of the growth rate of the wildtype strain. The intersection of the mutations identified by WGS revealed isocitrate dehydrogenase (ICD) as consistent target in three independently evolved mutants. Upon re-engineering in C. glutamicum Δppc Δpyc, the identified mutations led to diminished ICD activities and activated the glyoxylate shunt replenishing oxaloacetate required for growth. Intracellular relative quantitative metabolome analysis showed that the pools of citrate, isocitrate, cis-aconitate, and L-valine were significantly higher compared to the WT control. As an alternative to existing L-valine producer strains based on inactivated or attenuated pyruvate dehydrogenase complex, we finally engineered the PEP and pyruvate carboxylase-deficient C. glutamicum strains with identified ICD mutations for L-valine production by overexpression of the L-valine biosynthesis genes. Among them, C. glutamicum Δppc Δpyc ICDG407S (pJC4ilvBNCE) produced up to 8.9 ±â€¯0.4 g L-valine L-1, with a product yield of 0.22 ±â€¯0.01 g L-valine per g glucose.


Assuntos
Corynebacterium glutamicum , Evolução Molecular Direcionada/métodos , Engenharia Metabólica/métodos , Valina , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Valina/biossíntese , Valina/genética
5.
Appl Microbiol Biotechnol ; 102(14): 5901-5910, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29804137

RESUMO

Corynebacterium glutamicum is an industrial workhorse used for the production of amino acids and a variety of other chemicals and fuels. Within its regulatory repertoire, C. glutamicum possesses RamA which was initially identified as essential transcriptional regulator of acetate metabolism. Further studies revealed its relevance for ethanol and propionate catabolism and also identified RamA to function as global regulator in the metabolism of C. glutamicum. Thereby, RamA acts as transcriptional activator or repressor of genes encoding enzymes which are involved in carbon uptake, central carbon metabolism, and cell wall synthesis. RamA controls the expression of target genes either directly and/or indirectly by constituting feed-forward loop type of transcriptional motifs with other regulators such as GlxR, SugR, RamB, and GntR1. In this review, we summarize the current knowledge on RamA, its regulon, and its regulatory interplay with other transcriptional regulators coordinating the metabolism of C. glutamicum.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulon/genética
6.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887417

RESUMO

The productivity of industrial fermentation processes is essentially limited by the biomass-specific substrate consumption rate (qS ) of the applied microbial production system. Since qS depends on the growth rate (µ), we highlight the potential of the fastest-growing nonpathogenic bacterium, Vibrio natriegens, as a novel candidate for future biotechnological processes. V. natriegens grows rapidly in BHIN complex medium with a µ of up to 4.43 h-1 (doubling time of 9.4 min) as well as in minimal medium supplemented with various industrially relevant substrates. Bioreactor cultivations in minimal medium with glucose showed that V. natriegens possesses an exceptionally high qS under aerobic (3.90 ± 0.08 g g-1 h-1) and anaerobic (7.81 ± 0.71 g g-1 h-1) conditions. Fermentations with resting cells of genetically engineered V. natriegens under anaerobic conditions yielded an overall volumetric productivity of 0.56 ± 0.10 g alanine liter-1 min-1 (i.e., 34 g liter-1 h-1). These inherent properties render V. natriegens a promising new microbial platform for future industrial fermentation processes operating with high productivity.IMPORTANCE Low conversion rates are one major challenge to realizing microbial fermentation processes for the production of commodities operating competitively with existing petrochemical approaches. For this reason, we screened for a novel platform organism possessing characteristics superior to those of traditionally employed microbial systems. We identified the fast-growing V. natriegens, which exhibits a versatile metabolism and shows striking growth and conversion rates, as a solid candidate to reach outstanding productivities. Due to these inherent characteristics, V. natriegens can speed up common laboratory routines, is suitable for already existing production procedures, and forms an excellent foundation for engineering next-generation bioprocesses.

7.
Appl Microbiol Biotechnol ; 100(24): 10573-10583, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27687994

RESUMO

The stereochemistry of 2,3-butanediol (2,3-BD) synthesis in microbial fermentations is important for many applications. In this work, we showed that Corynebacterium glutamicum endowed with the Lactococcus lactis genes encoding α-acetolactate synthase and decarboxylase activities produced meso-2,3-BD as the major end product, meaning that (R)-acetoin is a substrate for endogenous 2,3-butanediol dehydrogenase (BDH) activity. This is curious in view of the reported absolute stereospecificity of C. glutamicum BDH for (S)-acetoin (Takusagawa et al. Biosc Biotechnol Biochem 65:1876-1878, 2001). To resolve this discrepancy, the enzyme encoded by butA Cg was produced in Escherichia coli and purified, and the stereospecific properties of the pure protein were examined. Activity assays monitored online by 1H-NMR using racemic acetoin and an excess of NADH showed an initial, fast production of (2S,3S)-2,3-BD, followed by a slow (∼20-fold lower apparent rate) formation of meso-2,3-BD. Kinetic parameters for (S)-acetoin, (R)-acetoin, meso-2,3-BD and (2S,3S)-BD were determined by spectrophotometric assays. V max values for (S)-acetoin and (R)-acetoin were 119 ± 15 and 5.23 ± 0.06 µmol min-1 mg protein-1, and K m values were 0.23 ± 0.02 and 1.49 ± 0.07 mM, respectively. We conclude that C. glutamicum BDH is not absolutely specific for (S)-acetoin, though this is the preferred substrate. Importantly, the low activity of BDH with (R)-acetoin was sufficient to support high yields of meso-2,3-BD in the engineered strain C. glutamicum ΔaceEΔpqoΔldhA(pEKEx2-als,aldB,butA Cg ). Additionally, we found that the BDH activity was nearly abolished upon inactivation of butA Cg (from 0.30 ± 0.03 to 0.004 ± 0.001 µmol min-1 mg protein-1), indicating that C. glutamicum expresses a single BDH under the experimental conditions examined.


Assuntos
Oxirredutases do Álcool/metabolismo , Butileno Glicóis/metabolismo , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Acetoína/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/isolamento & purificação , Carboxiliases/genética , Carboxiliases/metabolismo , Corynebacterium glutamicum/genética , Escherichia coli/genética , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
8.
Microb Cell Fact ; 14: 171, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511723

RESUMO

BACKGROUND: 2,3-Butanediol is an important bulk chemical with a wide range of applications. In bacteria, this metabolite is synthesised from pyruvate via a three-step pathway involving α-acetolactate synthase, α-acetolactate decarboxylase and 2,3-butanediol dehydrogenase. Thus far, the best producers of 2,3-butanediol are pathogenic strains, hence, the development of more suitable organisms for industrial scale fermentation is needed. Herein, 2,3-butanediol production was engineered in the Generally Regarded As Safe (GRAS) organism Corynebacterium glutamicum. A two-stage fermentation process was implemented: first, cells were grown aerobically on acetate; in the subsequent production stage cells were used to convert glucose into 2,3-butanediol under non-growing and oxygen-limiting conditions. RESULTS: A gene cluster, encoding the 2,3-butanediol biosynthetic pathway of Lactococcus lactis, was assembled and expressed in background strains, C. glutamicum ΔldhA, C. glutamicum ΔaceEΔpqoΔldhA and C. glutamicum ΔaceEΔpqoΔldhAΔmdh, tailored to minimize pyruvate-consuming reactions, i.e., to prevent carbon loss in lactic, acetic and succinic acids. Producer strains were characterized in terms of activity of the relevant enzymes in the 2,3-butanediol forming pathway, growth, and production of 2,3-butanediol under oxygen-limited conditions. Productivity was maximized by manipulating the aeration rate in the production phase. The final strain, C. glutamicum ΔaceEΔpqoΔldhAΔmdh(pEKEx2-als,aldB,Ptuf butA), under optimized conditions produced 2,3-butanediol with a 0.66 mol mol(-1) yield on glucose, an overall productivity of 0.2 g L(-1) h(-1) and a titer of 6.3 g L(-1). CONCLUSIONS: We have successfully developed C. glutamicum into an efficient cell factory for 2,3-butanediol production. The use of the engineered strains as a basis for production of acetoin, a widespread food flavour, is proposed.


Assuntos
Butileno Glicóis/metabolismo , Corynebacterium glutamicum/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Butileno Glicóis/química , Corynebacterium glutamicum/metabolismo , Glucose/metabolismo , L-Lactato Desidrogenase/deficiência , L-Lactato Desidrogenase/genética , Lactococcus lactis/genética , Engenharia Metabólica , Família Multigênica , Oxigênio/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo
9.
Appl Environ Microbiol ; 80(10): 3015-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610842

RESUMO

Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase in acetate, both at the expense of l-lactate production; moreover, dihydroxyacetone formation was abolished. The redistribution of carbon fluxes in response to CO2 was estimated by using (13)C-labeled glucose and (13)C nuclear magnetic resonance (NMR) analysis of the labeling patterns in end products. The flux analysis showed that 97% of succinate was produced via the reductive part of the tricarboxylic acid cycle, with the low activity of the oxidative branch being sufficient to provide the reducing equivalents needed for the redox balance. The flux via the pentose phosphate pathway was low (~5%) regardless of the presence or absence of CO2. Moreover, there was significant channeling of carbon to storage compounds (glycogen and trehalose) and concomitant catabolism of these reserves. The intracellular and extracellular pools of lactate and succinate were measured by in vivo NMR, and the stoichiometry (H(+):organic acid) of the respective exporters was calculated. This study shows that it is feasible to take advantage of natural cellular regulation mechanisms to obtain high yields of succinate with C. glutamicum without genetic manipulation.


Assuntos
Dióxido de Carbono/metabolismo , Corynebacterium glutamicum/metabolismo , Ácido Succínico/metabolismo , Anaerobiose , Isótopos de Carbono/análise , Corynebacterium glutamicum/química , Glucose/química , Glucose/metabolismo , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Ácido Succínico/química
10.
Appl Microbiol Biotechnol ; 98(13): 5859-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24816722

RESUMO

The branched chain amino acid L-valine is an essential nutrient for higher organisms, such as animals and humans. Besides the pharmaceutical application in parenteral nutrition and as synthon for the chemical synthesis of e.g. herbicides or anti-viral drugs, L-valine is now emerging into the feed market, and significant increase of sales and world production is expected. In accordance, well-known microbial production bacteria, such as Escherichia coli and Corynebacterium glutamicum strains, have recently been metabolically engineered for efficient L-valine production under aerobic or anaerobic conditions, and the respective cultivation and production conditions have been optimized. This review summarizes the state of the art in L-valine biosynthesis and its regulation in E. coli and C. glutamicum with respect to optimal metabolic network for microbial L-valine production, genetic strain engineering and bioprocess development for L-valine production, and finally, it will shed light on emerging technologies that have the potential to accelerate strain and bioprocess engineering in the near future.


Assuntos
Vias Biossintéticas/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Valina/biossíntese , Aerobiose , Anaerobiose , Corynebacterium glutamicum/genética
11.
Appl Microbiol Biotechnol ; 98(20): 8563-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25139448

RESUMO

The exploration of scale-down models to imitate the influence of large scale bioreactor inhomogeneities on cellular metabolism is a topic with increasing relevance. While gradients of substrates, pH, or dissolved oxygen are often investigated, oscillating CO2/HCO3 (-) levels, a typical scenario in large industrial bioreactors, is rarely addressed. Hereby, we investigate the metabolic and transcriptional response in Corynebacterium glutamicum wild type as well as the impact on L-lysine production in a model strain exposed to pCO2 gradients of (75-315) mbar. A three-compartment cascade bioreactor system was developed and characterized that offers high flexibility for installing gradients and residence times to mimic industrial-relevant conditions and provides the potential of accurate carbon balancing. The phenomenological analysis of cascade fermentations imposed to the pCO2 gradients at industry-relevant residence times of about 3.6 min did not significantly impair the process performance, with growth and product formation being similar to control conditions. However, transcriptional analysis disclosed up to 66 differentially expressed genes already after 3.6 min under stimulus exposure, with the overall change in gene expression directly correlateable to the pCO2 gradient intensity and the residence time of the cells.


Assuntos
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Lisina/metabolismo , Transcrição Gênica , Reatores Biológicos/microbiologia , Inibidores de Catecol O-Metiltransferase , Corynebacterium glutamicum/genética , Meios de Cultura/química , Perfilação da Expressão Gênica
12.
Microb Biotechnol ; 17(1): e14277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37256270

RESUMO

Vibrio natriegens is an emerging host for biotechnology due to its high growth and substrate consumption rates. In industrial processes typically fed-batch processes are applied to obtain high space-time yields. In this study, we established an aerobic glucose-limited fed-batch fermentation with the wild type (wt) of V. natriegens which yielded biomass concentrations of up to 28.4 gX L-1 . However, we observed that the viscosity of the culture broth increased by a factor of 800 at the end of the cultivation due to the formation of 157 ± 20 mg exopolysaccharides (EPS) L-1 . Analysis of the genomic repertoire revealed several genes and gene clusters associated with EPS formation. Deletion of the transcriptional regulator cpsR in V. natriegens wt did not reduce EPS formation, however, it resulted in a constantly low viscosity of the culture broth and altered the carbohydrate content of the EPS. A mutant lacking the cps cluster secreted two-fold less EPS compared to the wt accompanied by an overall low viscosity and a changed EPS composition. When we cultivated the succinate producer V. natriegens Δlldh Δdldh Δpfl Δald Δdns::pycCg (Succ1) under anaerobic conditions on glucose, we also observed an increased viscosity at the end of the cultivation. Deletion of cpsR and the cps cluster in V. natriegens Succ1 reduced the viscosity five- to six-fold which remained at the same level observed at the start of the cultivation. V. natriegens Succ1 ΔcpsR and V. natriegens Succ1 Δcps achieved final succinate concentrations of 51 and 46 g L-1 with a volumetric productivity of 8.5 and 7.7 gSuc L-1 h-1 , respectively. Both strains showed a product yield of about 1.4 molSuc molGlc -1 , which is 27% higher compared with that of V. natriegens Succ1 and corresponds to 81% of the theoretical maximum.


Assuntos
Ácido Succínico , Vibrio , Anaerobiose , Succinatos , Glucose
13.
Appl Environ Microbiol ; 79(18): 5566-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23835179

RESUMO

Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Cetoácidos/metabolismo , Lisina/biossíntese , Engenharia Metabólica/métodos , Complexo Piruvato Desidrogenase/genética , Valina/biossíntese , Biomassa , Corynebacterium glutamicum/crescimento & desenvolvimento , Regulação para Baixo , Deleção de Genes , Expressão Gênica , Glucose/metabolismo , Hemiterpenos , Redes e Vias Metabólicas/genética , Regiões Promotoras Genéticas , Recombinação Genética
14.
Microb Biotechnol ; 16(5): 1041-1053, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905370

RESUMO

Corynebacterium glutamicum experiences a transient iron limitation during growth in minimal medium, which can be compensated by the external supplementation of protocatechuic acid (PCA). Although C. glutamicum is genetically equipped to form PCA from the intermediate 3-dehydroshikimate catalysed by 3-dehydroshikimate dehydratase (encoded by qsuB), PCA synthesis is not part of the native iron-responsive regulon. To obtain a strain with improved iron availability even in the absence of the expensive supplement PCA, we re-wired the transcriptional regulation of the qsuB gene and modified PCA biosynthesis and degradation. Therefore, we ushered qsuB expression into the iron-responsive DtxR regulon by replacing the native promoter of the qsuB gene by the promoter PripA and introduced a second copy of the PripA -qsuB cassette into the genome of C. glutamicum. Reduction of the degradation was achieved by mitigating expression of the pcaG and pcaH genes through a start codon exchange. The final strain C. glutamicum IRON+ showed in the absence of PCA a significantly increased intracellular Fe2+ availability, exhibited improved growth properties on glucose and acetate, retained a wild type-like biomass yield but did not accumulate PCA in the supernatant. For the cultivation in minimal medium C. glutamicum IRON+ represents a useful platform strain that reveals beneficial growth properties on different carbon sources without affecting the biomass yield and overcomes the need of PCA supplementation.


Assuntos
Corynebacterium glutamicum , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
15.
Microbiol Resour Announc ; 12(4): e0127722, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36988507

RESUMO

Pseudomonas carboxydohydrogena is a lithoautotrophic and obligate aerobic alphaproteobacterium, which has the unique ability to utilize CO, CO2, H2, and mixtures thereof as sole carbon and energy sources. Here, we report the complete genome sequence of type strain DSM 1083 and its close relation to Afipia carboxidovorans strain OM5.

16.
Biotechnol Biofuels Bioprod ; 16(1): 116, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464396

RESUMO

BACKGROUND: Fatty acid-derived products such as fatty alcohols (FAL) find growing application in cosmetic products, lubricants, or biofuels. So far, FAL are primarily produced petrochemically or through chemical conversion of bio-based feedstock. Besides the well-known negative environmental impact of using fossil resources, utilization of bio-based first-generation feedstock such as palm oil is known to contribute to the loss of habitat and biodiversity. Thus, the microbial production of industrially relevant chemicals such as FAL from second-generation feedstock is desirable. RESULTS: To engineer Corynebacterium glutamicum for FAL production, we deregulated fatty acid biosynthesis by deleting the transcriptional regulator gene fasR, overexpressing a fatty acyl-CoA reductase (FAR) gene of Marinobacter hydrocarbonoclasticus VT8 and attenuating the native thioesterase expression by exchange of the ATG to a weaker TTG start codon. C. glutamicum ∆fasR cg2692TTG (pEKEx2-maqu2220) produced in shaking flasks 0.54 ± 0.02 gFAL L-1 from 20 g glucose L-1 with a product yield of 0.054 ± 0.001 Cmol Cmol-1. To enable xylose utilization, we integrated xylA encoding the xylose isomerase from Xanthomonas campestris and xylB encoding the native xylulose kinase into the locus of actA. This approach enabled growth on xylose. However, adaptive laboratory evolution (ALE) was required to improve the growth rate threefold to 0.11 ± 0.00 h-1. The genome of the evolved strain C. glutamicum gX was re-sequenced, and the evolved genetic module was introduced into C. glutamicum ∆fasR cg2692TTG (pEKEx2-maqu2220) which allowed efficient growth and FAL production on wheat straw hydrolysate. FAL biosynthesis was further optimized by overexpression of the pntAB genes encoding the membrane-bound transhydrogenase of E. coli. The best-performing strain C. glutamicum ∆fasR cg2692TTG CgLP12::(Ptac-pntAB-TrrnB) gX (pEKEx2-maqu2220) produced 2.45 ± 0.09 gFAL L-1 with a product yield of 0.054 ± 0.005 Cmol Cmol-1 and a volumetric productivity of 0.109 ± 0.005 gFAL L-1 h-1 in a pulsed fed-batch cultivation using wheat straw hydrolysate. CONCLUSION: The combination of targeted metabolic engineering and ALE enabled efficient FAL production in C. glutamicum from wheat straw hydrolysate for the first time. Therefore, this study provides useful metabolic engineering principles to tailor this bacterium for other products from this second-generation feedstock.

17.
Appl Microbiol Biotechnol ; 94(2): 449-59, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22228312

RESUMO

A Corynebacterium glutamicum strain with inactivated pyruvate dehydrogenase complex and a deletion of the gene encoding the pyruvate:quinone oxidoreductase produces about 19 mM L: -valine, 28 mM L: -alanine and about 55 mM pyruvate from 150 mM glucose. Based on this double mutant C. glutamicum △aceE △pqo, we engineered C. glutamicum for efficient production of pyruvate from glucose by additional deletion of the ldhA gene encoding NAD(+)-dependent L: -lactate dehydrogenase (LdhA) and introduction of a attenuated variant of the acetohydroxyacid synthase (△C-T IlvN). The latter modification abolished overflow metabolism towards L: -valine and shifted the product spectrum to pyruvate production. In shake flasks, the resulting strain C. glutamicum △aceE △pqo △ldhA △C-T ilvN produced about 190 mM pyruvate with a Y (P/S) of 1.36 mol per mol of glucose; however, it still secreted significant amounts of L: -alanine. Additional deletion of genes encoding the transaminases AlaT and AvtA reduced L: -alanine formation by about 50%. In fed-batch fermentations at high cell densities with adjusted oxygen supply during growth and production (0-5% dissolved oxygen), the newly constructed strain C. glutamicum △aceE △pqo △ldhA △C-T ilvN △alaT △avtA produced more than 500 mM pyruvate with a maximum yield of 0.97 mol per mole of glucose and a productivity of 0.92 mmol g ((CDW)) (-1)  h(-1) (i.e., 0.08 g g((CDW)) (-1) h(-1)) in the production phase.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Ácido Pirúvico/metabolismo , Deleção de Genes , Expressão Gênica , Glucose/metabolismo , Valina/metabolismo
18.
Adv Biochem Eng Biotechnol ; 180: 1-32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34894287

RESUMO

Aerobic carboxydotrophic bacteria are a group of microorganisms which possess the unique trait to oxidize carbon monoxide (CO) as sole energy source with molecular oxygen (O2) to produce carbon dioxide (CO2) which subsequently is used for biomass formation via the Calvin-Benson-Bassham cycle. Moreover, most carboxydotrophs are also able to oxidize hydrogen (H2) with hydrogenases to drive the reduction of carbon dioxide in the absence of CO. As several abundant industrial off-gases contain significant amounts of CO, CO2, H2 as well as O2, these bacteria come into focus for industrial application to produce chemicals and fuels from such gases in gas fermentation approaches. Since the group of carboxydotrophic bacteria is rather unknown and not very well investigated, we will provide an overview about their lifestyle and the underlying metabolic characteristics, introduce promising members for industrial application, and give an overview of available genetic engineering tools. We will point to limitations and discuss challenges, which have to be overcome to apply metabolic engineering approaches and to utilize aerobic carboxydotrophs in the industrial environment.


Assuntos
Biotecnologia , Dióxido de Carbono , Bactérias/genética , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Gases/metabolismo , Hidrogênio/metabolismo , Engenharia Metabólica
19.
NAR Genom Bioinform ; 4(3): lqac074, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36186922

RESUMO

Transcriptional-translational coupling is accepted to be a fundamental mechanism of gene expression in prokaryotes and therefore has been analyzed in detail. However, the underlying genomic architecture of the expression machinery has not been well investigated so far. In this study, we established a bioinformatics pipeline to systematically investigated >1800 bacterial genomes for the abundance of transcriptional and translational associated genes clustered in distinct gene cassettes. We identified three highly frequent cassettes containing transcriptional and translational genes, i.e. rplk-nusG (gene cassette 1; in 553 genomes), rpoA-rplQ-rpsD-rpsK-rpsM (gene cassette 2; in 656 genomes) and nusA-infB (gene cassette 3; in 877 genomes). Interestingly, each of the three cassettes harbors a gene (nusG, rpsD and nusA) encoding a protein which links transcription and translation in bacteria. The analyses suggest an enrichment of these cassettes in pathogenic bacterial phyla with >70% for cassette 3 (i.e. Neisseria, Salmonella and Escherichia) and >50% for cassette 1 (i.e. Treponema, Prevotella, Leptospira and Fusobacterium) and cassette 2 (i.e. Helicobacter, Campylobacter, Treponema and Prevotella). These insights form the basis to analyze the transcriptional regulatory mechanisms orchestrating transcriptional-translational coupling and might open novel avenues for future biotechnological approaches.

20.
Trends Biotechnol ; 40(4): 385-397, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34482995

RESUMO

Developing cost-efficient biotechnological processes is a major challenge in replacing fossil-based industrial production processes. The remarkable progress in genetic engineering ensures efficient and fast tailoring of microbial metabolism for a wide range of bioconversions. However, improving intrinsic properties such as tolerance, handling, growth, and substrate consumption rates is still challenging. At the same time, synthetic biology tools are becoming easier applicable and transferable to nonmodel organisms. These trends have resulted in the exploitation of new and unconventional microbial systems with sophisticated properties, which render them promising hosts for the bio-based industry. Here, we highlight the metabolic and cellular capabilities of representative prokaryotic newcomers and discuss the potential and drawbacks of these hosts for industrial application.


Assuntos
Biotecnologia , Biologia Sintética , Biotecnologia/métodos , Engenharia Genética , Engenharia Metabólica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA