Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055061

RESUMO

Understanding the flavivirus infection process in mosquito hosts is important and fundamental in the search for novel control strategies that target the mosquitoes' ability to carry and transmit pathogenic arboviruses. A group of viruses known as insect-specific viruses (ISVs) has been shown to interfere with the infection and replication of a secondary arbovirus infection in mosquitoes and mosquito-derived cell lines. However, the molecular mechanisms behind this interference are unknown. Therefore, in the present study, we infected the Aedes albopictus cell line U4.4 with either the West Nile virus (WNV), the insect-specific Lammi virus (LamV) or an infection scheme whereby cells were pre-infected with LamV 24 h prior to WNV challenge. The qPCR analysis showed that the dual-infected U4.4 cells had a reduced number of WNV RNA copies compared to WNV-only infected cells. The transcriptome profiles of the different infection groups showed a variety of genes with altered expression. WNV-infected cells had an up-regulation of a broad range of immune-related genes, while in LamV-infected cells, many genes related to stress, such as different heat-shock proteins, were up-regulated. The transcriptome profile of the dual-infected cells was a mix of up- and down-regulated genes triggered by both viruses. Furthermore, we observed an up-regulation of signal peptidase complex (SPC) proteins in all infection groups. These SPC proteins have shown importance for flavivirus assembly and secretion and could be potential targets for gene modification in strategies for the interruption of flavivirus transmission by mosquitoes.


Assuntos
Aedes/genética , Aedes/virologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Transcriptoma , Animais , Coinfecção , Biologia Computacional/métodos , Flavivirus , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Reação em Cadeia da Polimerase em Tempo Real , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental
2.
Arch Virol ; 166(10): 2937-2942, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34347169

RESUMO

The genus Gyrovirus was assigned to the family Anelloviridae in 2017 with only one recognized species, Chicken anemia virus. Over the last decade, many diverse viruses related to chicken anemia virus have been identified but not classified. Here, we provide a framework for the classification of new species in the genus Gyrovirus and communicate the establishment of nine new species. We adopted the 'Genus + freeform epithet' binomial system for the naming of these species.


Assuntos
Gyrovirus/classificação , Terminologia como Assunto , Anelloviridae/classificação , Anelloviridae/genética , Animais , Proteínas do Capsídeo/genética , Vírus da Anemia da Galinha/classificação , Vírus da Anemia da Galinha/genética , DNA Viral/genética , Bases de Dados Genéticas , Genoma Viral/genética , Gyrovirus/genética , Humanos , Filogenia , Análise de Sequência de DNA
3.
Arch Virol ; 166(10): 2943-2953, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34383165

RESUMO

Anelloviruses are small negative-sense single-stranded DNA viruses with genomes ranging in size from 1.6 to 3.9 kb. The family Anelloviridae comprised 14 genera before the present changes. However, in the last five years, a large number of diverse anelloviruses have been identified in various organisms. Here, we undertake a global analysis of mammalian anelloviruses whose full genome sequences have been determined and have an intact open reading frame 1 (ORF1). We established new criteria for the classification of anelloviruses, and, based on our analyses, we establish new genera and species to accommodate the unclassified anelloviruses. We also note that based on the updated species demarcation criteria, some previously assigned species (n = 10) merge with other species. Given the rate at which virus sequence data are accumulating, and with the identification of diverse anelloviruses, we acknowledge that the taxonomy will have to be dynamic and continuously evolve to accommodate new members.


Assuntos
Anelloviridae/classificação , Mamíferos/virologia , Anelloviridae/genética , Animais , Sequência de Bases , DNA Viral/genética , Bases de Dados Genéticas , Genoma Viral/genética , Fases de Leitura Aberta/genética , Filogenia , Terminologia como Assunto
4.
Virus Genes ; 55(2): 127-137, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30632016

RESUMO

The advancement in high-throughput sequencing technology and bioinformatics tools has spurred a new age of viral discovery. Arthropods is the largest group of animals and has shown to be a major reservoir of different viruses, including a group known as insect-specific viruses (ISVs). The majority of known ISVs have been isolated from mosquitoes and shown to belong to viral families associated with animal arbovirus pathogens, such as Flaviviridae, Togaviridae and Phenuiviridae. These insect-specific viruses have a strict tropism and are unable to replicate in vertebrate cells, these properties are interesting for many reasons. One is that these viruses could potentially be utilised as biocontrol agents using a similar strategy as for Wolbachia. Mosquitoes infected with the viral agent could have inferior vectorial capacity of arboviruses resulting in a decrease of circulating arboviruses of public health importance. Moreover, insect-specific viruses are thought to be ancestral to arboviruses and could be used to study the evolution of the switch from single-host to dual-host. In this review, we discuss new discoveries and hypothesis in the field of arboviruses and insect-specific viruses.


Assuntos
Arbovírus/genética , Vírus de Insetos/genética , Viroses/genética , Replicação Viral/genética , Animais , Arbovírus/patogenicidade , Culicidae/genética , Culicidae/virologia , Flaviviridae/genética , Flaviviridae/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Insetos Vetores/virologia , Vírus de Insetos/patogenicidade , Controle Biológico de Vetores , Especificidade da Espécie , Togaviridae/genética , Togaviridae/patogenicidade , Viroses/virologia
5.
Virol J ; 15(1): 71, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669586

RESUMO

BACKGROUND: Mosquitoes are the potential vectors for a variety of viruses that can cause diseases in the human and animal populations. Viruses in the order Picornavirales infect a broad range of hosts, including mosquitoes. In this study, we aimed to characterize a novel picorna-like virus from the Culex spp. of mosquitoes from the Zambezi Valley of Mozambique. METHODS: The extracted RNA from mosquito pools was pre-amplified with the sequence independent single primer amplification (SISPA) method and subjected to high-throughput sequencing using the Ion Torrent platform. Reads that are classified as Iflaviridae, Picornaviridae and Dicistroviridae were assembled by CodonCode Aligner and SPAdes. Gaps between the viral contigs were sequenced by PCR. The genomic ends were analyzed by 5' and 3' RACE PCRs. The ORF was predicted with the NCBI ORF finder. The conserved domains were identified with ClustalW multiple sequence alignment, and a phylogenetic tree was built with MEGA. The presence of the virus in individual mosquito pools was detected by RT-PCR assay. RESULTS: A near full-length viral genome (9740 nt) was obtained in Culex mosquitoes that encoded a complete ORF (3112 aa), named Culex picorna-like virus (CuPV-1). The predicted ORF had 38% similarity to the Hubei picorna-like virus 35. The sequence of the conserved domains, Helicase-Protease-RNA-dependent RNA polymerase, were identified by multiple sequence alignment and found to be at the 3' end, similar to iflaviruses. Phylogenetic analysis of the putative RdRP amino acid sequences indicated that the virus clustered with members of the Iflaviridae family. CuPV-1 was detected in both Culex and Mansonia individual pools with low infection rates. CONCLUSIONS: The study reported a highly divergent, near full-length picorna-like virus genome from Culex spp. mosquitoes from Mozambique. The discovery and characterization of novel viruses in mosquitoes is an initial step, which will provide insights into mosquito-virus interaction mechanisms, genetic diversity and evolution.


Assuntos
Culex/virologia , Filogenia , Picornaviridae/classificação , Picornaviridae/genética , Sequência de Aminoácidos , Animais , Genoma Viral , Vírus de Insetos/classificação , Vírus de Insetos/genética , Metagenômica , Moçambique , Fases de Leitura Aberta , RNA Viral/genética , Alinhamento de Sequência , Proteínas Virais
6.
Virus Genes ; 54(3): 466-469, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29564688

RESUMO

Porcine circovirus 3 (PCV3) is a newly detected circovirus belonging to the family Circoviridae with a circular ssDNA genome of 2000 bp that encodes two proteins-the replicase protein and the capsid protein. PCV3 was discovered for the first time in the US in 2016. After this initial discovery, PCV3 was detected in other parts of the world such as in China, South Korea, Italy and Poland. In this study, 49 tissue samples from Swedish pig herds were screened for PCV3 using PCR and 10 samples were positive and one was uncertain. The entire PCV3 genome and a mini PCV-like virus (MPCLV) were obtained from one of these samples. These two viruses showed a high sequence identity to PCV3 viruses from other countries as well as to MPCLV from the US. However, the sequence identity to PCV1 and 2 was only 31-48% on amino acid level. This is the first detection and complete genetic characterisation of PCV3 in Swedish pigs. It is also interesting to note that one of the positive samples was collected in 1993, showing that PCV3 has been present for a long time.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Genoma Viral , Doenças dos Suínos/virologia , Animais , Infecções por Circoviridae/virologia , Circovirus/classificação , Circovirus/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase/veterinária , Suécia , Suínos , Proteínas Virais/genética , Sequenciamento Completo do Genoma
7.
Protein Expr Purif ; 128: 1-7, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27496728

RESUMO

Blue eye disease caused by Porcine rubulavirus (PorPV) is an endemic viral infection of swine causing neurological and respiratory disease in piglets, and reproductive failure in sows and boars. The hemagglutinin-neuraminidase (HN) glycoprotein of PorPV is the most abundant component in the viral envelope and the main target of the immune response in infected animals. In this study, we expressed the HN-PorPV-recombinant (rHN-PorPV) protein in an Escherichia coli system and analyzed the immune responses in mice. The HN gene was cloned from the reference strain PorPV-La Piedad Michoacan Virus (GenBank accession number BK005918), into the pDual expression vector. The expressed protein was identified at a molecular weight of 61.7 kDa. Three-dimensional modeling showed that the main conformational and functional domains of the rHN-PorPV protein were preserved. The antigenicity of the expressed protein was confirmed by Western blot with a monoclonal antibody recognizing the HN, and by testing against serum samples from pigs experimentally infected with PorPV. The immunogenicity of the rHN-PorPV protein was tested by inoculation of BALB/c mice with AbISCO-100(®) as adjuvant. Analysis of the humoral immune responses in mice showed an increased level of specific antibodies 14 days after the first immunization, compared to the control group (P < 0.0005). The results show the ability of the rHN-PorPV protein to induce an antibody response in mice. Due to its immunogenic potential, the rHN-PorPV protein will be further evaluated in pig trials for its suitability for prevention and control of blue eye disease.


Assuntos
Clonagem Molecular , Expressão Gênica , Proteína HN , Imunogenicidade da Vacina , Rubulavirus , Vacinas Virais , Animais , Escherichia coli , Feminino , Proteína HN/biossíntese , Proteína HN/imunologia , Proteína HN/isolamento & purificação , Proteína HN/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Rubulavirus/enzimologia , Rubulavirus/imunologia , Suínos , Vacinas Virais/biossíntese , Vacinas Virais/imunologia
8.
BMC Genomics ; 16: 324, 2015 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-25896169

RESUMO

BACKGROUND: Schmallenberg virus (SBV) is a member of the Orthobunyavirus genus (Bunyaviridae family) causing malformations and abortions in ruminants. Although, as for other members of this family/genus, the non-structural protein NSs has been shown to be an interferon antagonist, very little is known regarding the overall inhibitory effects and targets of orthobunyavirus NSs proteins on host gene expression during infection. Therefore, using RNA-seq this study describes changes to the transcriptome of primary bovine cells following infection with Schmallenberg virus (SBV) or with a mutant lacking the non-structural protein NSs (SBVdelNSs) providing a detailed comparison of the effect of NSs expression on the host cell. RESULTS: The sequence reads from all samples (uninfected cells, SBV and SBVdelNSs) assembled well to the bovine host reference genome (on average 87.43% of the reads). During infection with SBVdelNSs, 649 genes were differentially expressed compared to uninfected cells (78.7% upregulated) and many of these were known antiviral and IFN-stimulated genes. On the other hand, only nine genes were differentially expressed in SBV infected cells compared to uninfected control cells, demonstrating the strong inhibitory effect of NSs on cellular gene expression. However, the majority of the genes that were expressed during SBV infection are involved in restriction of viral replication and spread indicating that SBV does not completely manage to shutdown the host antiviral response. CONCLUSIONS: In this study we show the effects of SBV NSs on the transcriptome of infected cells as well as the cellular response to wild type SBV. Although NSs is very efficient in shutting down genes of the host innate response, a number of possible antiviral factors were identified. Thus the data from this study can serve as a base for more detailed mechanistic studies of SBV and other orthobunyaviruses.


Assuntos
Infecções por Bunyaviridae/genética , Orthobunyavirus/fisiologia , Animais , Aorta/citologia , Aorta/metabolismo , Infecções por Bunyaviridae/virologia , Bovinos , Células Cultivadas , Imunidade Inata , Orthobunyavirus/isolamento & purificação , Orthobunyavirus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transcriptoma , Regulação para Cima , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
9.
J Gen Virol ; 95(Pt 8): 1640-1646, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24828331

RESUMO

Bunyaviruses have evolved a variety of strategies to counteract the antiviral defence systems of mammalian cells. Here we show that the NSs protein of Schmallenberg virus (SBV) induces the degradation of the RPB1 subunit of RNA polymerase II and consequently inhibits global cellular protein synthesis and the antiviral response. In addition, we show that the SBV NSs protein enhances apoptosis in vitro and possibly in vivo, suggesting that this protein could be involved in SBV pathogenesis in different ways.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Orthobunyavirus/fisiologia , RNA Polimerase II/metabolismo , Proteínas não Estruturais Virais/metabolismo , Humanos , Orthobunyavirus/imunologia , Proteólise
10.
J Gen Virol ; 94(Pt 2): 263-269, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23100370

RESUMO

Borna disease virus (BDV) is a neurotropic, negative-stranded RNA virus causing persistent infection and progressive neurological disorders in a wide range of warm-blooded animals. The role of the small non-structural X protein in viral pathogenesis is not completely understood. Here we investigated whether the X protein of BDV and avian bornavirus (ABV) interferes with the type I interferon (IFN) system, similar to other non-structural proteins of negative-stranded RNA viruses. In luciferase reporter assays, we found that the X protein of various bornaviruses interfered with the type I IFN system at all checkpoints investigated, in contrast to previously reported findings, resulting in reduced type I IFN secretion.


Assuntos
Bornaviridae/imunologia , Bornaviridae/patogenicidade , Evasão da Resposta Imune , Interferon Tipo I/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/virologia , Genes Reporter , Humanos , Luciferases/análise , Luciferases/genética , Dados de Sequência Molecular , RNA Viral/genética , Análise de Sequência de DNA , Proteínas não Estruturais Virais/imunologia , Fatores de Virulência/imunologia
11.
Virus Genes ; 47(2): 370-3, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23225112

RESUMO

Porcine bocaviruses (PoBoVs) are small linear ssDNA viruses belonging to the genus bocavirus in the family Parvoviridae. The genome encodes four proteins-the non-structural protein 1 (NS1), the NP1 protein (unknown function) and the two structural proteins VP1 and VP2. In recent years, a number of different highly divergent PoBoV species have been discovered. PoBoVs have been shown to be present in pig populations in Europe, Asia and in the United States of America. In this study, we present the first data of the presence of PoBoV in Africa, specifically in Uganda. A PCR targeting a PoBoV species that have previously been detected in both Sweden and China was used to screen 95 serum samples from domestic pigs in Uganda. Two pigs were found to be positive for this specific PoBoV and the complete coding region was amplified from one of these samples. The amino acid sequence comparison of all these proteins showed a high identity (98-99 %) to the published Chinese sequences (strains: H18 and SX) belonging to the same PoBoV species. The same was true for the Swedish sequences from the same species. To the other PoBoV species the divergence was higher and only a 28-43 % protein sequence identity was seen comparing the different proteins.


Assuntos
Bocavirus/classificação , Bocavirus/isolamento & purificação , Infecções por Parvoviridae/veterinária , Doenças dos Suínos/virologia , Animais , Bocavirus/genética , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Dados de Sequência Molecular , Infecções por Parvoviridae/virologia , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Soro/virologia , Sus scrofa , Suínos , Uganda
12.
Virol J ; 9: 39, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22336096

RESUMO

BACKGROUND: Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2) are small, single-stranded circular DNA viruses belonging to the Anelloviridae family. Available studies clearly show that both viruses are widely distributed in the pig populations in America, Europe and Asia, although the impact of the infection is still unclear. Currently, the situation in domestic pig populations on the African continent is not known. Therefore, the aim of this study was to investigate the possible presence of the two viruses in domestic pigs in Uganda, and describe the phylogenetic relationships to those in the rest of the world. RESULTS: Ninety-five serum samples from six districts in Uganda were used, and PCR using TTSuV1 and 2 specific primers for the UTR region was run for viral nucleic acid detection. The positive samples were sequenced, and phylogenetic analyses performed in order to compare the Ugandan sequences with sequences from other parts of the world. The prevalence of TTSuV1 and 2 in the selected domestic pigs were estimated at 16.8% and 48.4% respectively, with co-infection found in 13.7%. The sequence identity was 90-100% between the Ugandan TTSuV1; and 63-100% between the Ugandan TTSuV2 sequences. CONCLUSION: This is the first report on the presence of TTSuV1 and 2 in domestic pigs in Uganda. These results highlight the importance of screening for emerging viruses given the globalisation of human activities.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Torque teno virus/classificação , Torque teno virus/isolamento & purificação , Animais , Análise por Conglomerados , Primers do DNA/genética , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/virologia , DNA Viral/química , DNA Viral/genética , DNA Viral/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Soro/virologia , Suínos , Torque teno virus/genética , Uganda
13.
Virol J ; 9: 192, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22967311

RESUMO

BACKGROUND: As a result of rapidly growing human populations, intensification of livestock production and increasing exploitation of wildlife habitats for animal agriculture, the interface between wildlife, livestock and humans is expanding, with potential impacts on both domestic animal and human health. Wild animals serve as reservoirs for many viruses, which may occasionally result in novel infections of domestic animals and/or the human population. Given this background, we used metagenomics to investigate the presence of viral pathogens in sera collected from bushpigs (Potamochoerus larvatus), a nocturnal species of wild Suid known to move between national parks and farmland, in Uganda. RESULTS: Application of 454 pyrosequencing demonstrated the presence of Torque teno sus virus (TTSuV), porcine parvovirus 4 (PPV4), porcine endogenous retrovirus (PERV), a GB Hepatitis C-like virus, and a Sclerotinia hypovirulence-associated-like virus in sera from the bushpigs. PCR assays for each specific virus combined with Sanger sequencing revealed two TTSuV-1 variants, one TTSuV-2 variant as well as PPV4 in the serum samples and thereby confirming the findings from the 454 sequencing. CONCLUSIONS: Using a viral metagenomic approach we have made an initial analysis of viruses present in bushpig sera and demonstrated for the first time the presence of PPV4 in a wild African Suid. In addition we identified novel variants of TTSuV-1 and 2 in bushpigs.


Assuntos
Genômica/métodos , Parvovirus Suíno/classificação , Parvovirus Suíno/genética , Suínos , Torque teno virus/classificação , Torque teno virus/genética , Animais , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Genoma Viral , Filogenia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Uganda/epidemiologia
14.
Viruses ; 14(8)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36016275

RESUMO

Increasing amounts of data indicate that bats harbor a higher viral diversity relative to other mammalian orders, and they have been recognized as potential reservoirs for pathogenic viruses, such as the Hendra, Nipah, Marburg, and SARS-CoV viruses. Here, we present the first viral metagenomic analysis of Pipistrellus pygmaeus from Uppsala, Sweden. Total RNA was extracted from the saliva and feces of individual bats and analyzed using Illumina sequencing. The results identified sequences related to 51 different viral families, including vertebrate, invertebrate, and plant viruses. These viral families include Coronaviridae, Picornaviridae, Dicistroviridae, Astroviridae, Hepeviridae, Reoviridae, Botourmiaviridae, Lispviridae, Totiviridae, Botoumiaviridae, Parvoviridae, Retroviridae, Adenoviridae, and Partitiviridae, as well as different unclassified viruses. We further characterized three near full-length genome sequences of bat coronaviruses. A phylogenetic analysis showed that these belonged to alphacoronaviruses with the closest similarity (78-99% at the protein level) to Danish and Finnish bat coronaviruses detected in Pipistrellus and Myotis bats. In addition, the full-length and the near full-length genomes of picornavirus were characterized. These showed the closest similarity (88-94% at the protein level) to bat picornaviruses identified in Chinese bats. Altogether, the results of this study show that Swedish Pipistrellus bats harbor a great diversity of viruses, some of which are closely related to mammalian viruses. This study expands our knowledge on the bat population virome and improves our understanding of the evolution and transmission of viruses among bats and to other species.


Assuntos
Quirópteros , Picornaviridae , Vírus de Plantas , Vírus de RNA , Animais , Genoma Viral , Humanos , Mamíferos , Filogenia , Picornaviridae/genética , Vírus de Plantas/genética , Vírus de RNA/genética , Suécia , Viroma
15.
Pathogens ; 12(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36678360

RESUMO

Bats are reservoirs for many different viruses, including some that can be transmitted to and cause disease in humans and/or animals. However, less is known about the bat-borne viruses circulating in Northern European countries such as in Sweden. In this study, saliva from Myotis brandtii bats, collected from south-central Sweden, was analyzed for viruses. The metagenomic analysis identified viral sequences belonging to different viral families, including, e.g., Nairoviridae, Retroviridae, Poxviridae, Herpesviridae and Siphoviridae. Interestingly, through the data analysis, the near-complete genome of Issyk-Kul virus (ISKV), a zoonotic virus within the Nairoviridae family, was obtained, showing 95-99% protein sequence identity to previously described ISKVs. This virus is believed to infect humans via an intermediate tick host or through contact with bat excrete. ISKV has previously been found in bats in Europe, but not previously in the Nordic region. In addition, near full-length genomes of two novel viruses belonging to Picornavirales order and Tymoviridae family were characterized. Taken together, our study has not only identified novel viruses, but also the presence of a zoonotic virus not previously known to circulate in this region. Thus, the results from these types of studies can help us to better understand the diversity of viruses circulating in bat populations, as well as identify viruses with zoonotic potential that could possibly be transmitted to humans.

16.
Virol J ; 8: 37, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21261961

RESUMO

BACKGROUND: In this study we utilized padlock probes and rolling circle amplification as a mean to detect and study the replication of porcine circovirus type 2 (PCV2) in cultured cells and in infected tissue. Porcine circovirus type 2 is a single-stranded circular DNA virus associated with several severe diseases, porcine circovirus diseases (PCVD) in pigs, such as postweaning multisystemic wasting syndrome. The exact reason and mechanisms behind the trigger of PCV2 replication that is associated with these diseases is not well-known. The virus replicates with rolling circle replication and thus also exists as a double-stranded replicative form. RESULTS: By applying padlock probes and rolling circle amplification we could not only visualise the viral genome but also discriminate between the genomic and the replicative strand in situ. The genomic strand existed in higher numbers than the replicative strand. The virus accumulated in certain nuclei but also spread into the cytoplasm of cells in the surrounding tissue. In cultured cells the average number of signals increased with time after infection. CONCLUSIONS: We have developed a method for detection of both strands of PCV2 in situ that can be useful for studies of replication and in situ detection of PCV2 as well as of DNA viruses in general.


Assuntos
Circovirus/isolamento & purificação , Circovirus/fisiologia , DNA Viral/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sondas de Oligonucleotídeos/genética , Virologia/métodos , Replicação Viral , Animais , Linhagem Celular , Núcleo Celular/virologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Circovirus/genética , Citoplasma/virologia , Linfonodos/virologia , Suínos , Doenças dos Suínos/virologia
17.
One Health ; 12: 100242, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33851003

RESUMO

A number of viruses transmitted by mosquitoes are well known to cause disease in both humans and horses, ranging from mild fevers to mortal neurological disease. A recently discovered connection between the alphavirus Sindbis virus (SINV) and neurological disease in horses in South Africa initiated this serological study in northern Europe, where the same genotype of SINV (SINV-I) is also highly endemic. We tested 171 serum samples, originally obtained from horses for other reasons from April to October 2019, for presence of SINV neutralising antibodies using a plaque reduction neutralisation test (PRNT). The serum from six horses reduced the plaque count more than 80%, and two out of these reduced the plaque count more than 90%. These horses were sampled in six different regions of Sweden, and included individuals sampled from April to August. This study shows that horses in Sweden have become infected with SINV and developed neutralising antibodies. Potential connections between infection and development of disease are important questions for future studies.

18.
Viruses ; 13(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834988

RESUMO

RNA interference (RNAi)-mediated antiviral immunity is believed to be the primary defense against viral infection in mosquitoes. The production of virus-specific small RNA has been demonstrated in mosquitoes and mosquito-derived cell lines for viruses in all of the major arbovirus families. However, many if not all mosquitoes are infected with a group of viruses known as insect-specific viruses (ISVs), and little is known about the mosquito immune response to this group of viruses. Therefore, in this study, we sequenced small RNA from an Aedes albopictus-derived cell line infected with either Lammi virus (LamV) or Hanko virus (HakV). These viruses belong to two distinct phylogenetic groups of insect-specific flaviviruses (ISFVs). The results revealed that both viruses elicited a strong virus-derived small interfering RNA (vsiRNA) response that increased over time and that targeted the whole viral genome, with a few predominant hotspots observed. Furthermore, only the LamV-infected cells produced virus-derived Piwi-like RNAs (vpiRNAs); however, they were mainly derived from the antisense genome and did not show the typical ping-pong signatures. HakV, which is more distantly related to the dual-host flaviviruses than LamV, may lack certain unknown sequence elements or structures required for vpiRNA production. Our findings increase the understanding of mosquito innate immunity and ISFVs' effects on their host.


Assuntos
Aedes/virologia , Flaviviridae/genética , Flavivirus/genética , Vírus de Insetos/genética , Insetos/virologia , Animais , Linhagem Celular , Flaviviridae/classificação , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Vírus de Insetos/classificação , Mosquitos Vetores/virologia , Filogenia , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética , RNA Viral/genética , Análise de Sequência
19.
J Clin Microbiol ; 48(12): 4392-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20926705

RESUMO

In 2000, farmed mink kits in Denmark were affected by a neurological disorder. The characteristic clinical signs included shaking, staggering gait, and ataxia. The disease, given the name shaking mink syndrome, was reproduced by the inoculation of brain homogenate from affected mink kits into healthy ones. However, the etiology remained unknown despite intensive efforts. In this study, random amplification and large-scale sequencing were used, and an astrovirus was detected in the brain tissue of three experimentally infected mink kits. This virus also was found in the brain of three mink kits naturally displaying the disease but not in the six healthy animals investigated. The complete coding region of the detected astrovirus was sequenced and compared to those of both a mink astrovirus associated with preweaning diarrhea and to a recently discovered human astrovirus associated with a case of encephalitis in a boy with x-linked agammaglobulinemia. The identities were 80.4 and 52.3%, respectively, showing that the virus described in this study was more similar to the preweaning diarrhea mink astrovirus. For the nonstructural coding regions the sequence identity was around 90% compared to that of the astrovirus, which is associated with preweaning diarrhea in mink. The region coding for the structural protein was more diverse, showing only 67% sequence identity. This finding is of interest not only because the detected virus may be the etiological agent of the shaking mink syndrome but also because this is one of the first descriptions of an astrovirus found in the central nervous system of animals.


Assuntos
Infecções por Astroviridae/veterinária , Encéfalo/virologia , Mamastrovirus/isolamento & purificação , Metagenômica/métodos , Vison/virologia , Virologia/métodos , Animais , Infecções por Astroviridae/virologia , Análise por Conglomerados , Dinamarca , Ordem dos Genes , Genoma Viral , Masculino , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
20.
Microbiol Resour Announc ; 9(39)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972933

RESUMO

Here, we report the complete coding sequence of a pasivirus found in the tonsil of a conventionally reared pig from a herd with respiratory disease in Sweden. The genome displays 75% to 87% and 81% to 94% nucleotide and amino acid sequence identity, respectively, to genomes of pasiviruses from other parts of the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA