Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 58(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36556918

RESUMO

Background and Objectives: Breast cancer (BC) molecular subtypes have unique incidence, survival and response to therapy. There are five BC subtypes described by immunohistochemistry: luminal A, luminal B HER2 positive and HER2 negative, triple negative (TNBC) and HER2-enriched. Multiparametric breast MRI (magnetic resonance imaging) provides morphological and functional characteristics of breast tumours and is nowadays recommended in the preoperative setting. Aim: To evaluate the multiparametric MRI features (T2-WI, ADC values and DCE) of breast tumours along with breast density and background parenchymal enhancement (BPE) features among different BC molecular subtypes. Materials and Methods: This was a retrospective study which included 344 patients. All underwent multiparametric breast MRI (T2WI, ADC and DCE sequences) and features were extracted according to the latest BIRADS lexicon. The inter-reader agreement was assessed using the intraclass coefficient (ICC) between the ROI of ADC obtained from the two breast imagers (experienced and moderately experienced). Results: The study population was divided as follows: 89 (26%) with luminal A, 39 (11.5%) luminal B HER2 positive, 168 (48.5%) luminal B HER2 negative, 41 (12%) triple negative (TNBC) and 7 (2%) with HER2 enriched. Luminal A tumours were associated with special histology type, smallest tumour size and persistent kinetic curve (all p-values < 0.05). Luminal B HER2 negative tumours were associated with lowest ADC value (0.77 × 10−3 mm2/s2), which predicts the BC molecular subtype with an accuracy of 0.583. TNBC were associated with asymmetric and moderate/marked BPE, round/oval masses with circumscribed margins and rim enhancement (all p-values < 0.05). HER2 enriched BC were associated with the largest tumour size (mean 37.28 mm, p-value = 0.02). Conclusions: BC molecular subtypes can be associated with T2WI, ADC and DCE MRI features. ADC can help predict the luminal B HER2 negative cases.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Mama
2.
Curr Med Imaging ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37218191

RESUMO

INTRODUCTION: Prostate magnetic resonance imaging (MRI) has been recently integrated into the pathway of diagnosis of prostate cancer (PCa). However, the lack of an optimal contrast-to-noise ratio hinders automatic recognition of suspicious lesions, thus developing a solution for proper delimitation of the tumour and its separation from the healthy parenchyma, which is of primordial importance. METHOD: As a solution to this unmet medical need, we aimed to develop a decision support system based on artificial intelligence, which automatically segments the prostate and any suspect area from the 3D MRI images. We assessed retrospective data from all patients diagnosed with PCa by MRI-US fusion prostate biopsy, who underwent prostate MRI in our department due to a clinical or biochemical suspicion of PCa (n=33). All examinations were performed using a 1.5 Tesla MRI scanner. All images were reviewed by two radiologists, who performed manual segmentation of the prostate and all lesions. A total of 145 augmented datasets were generated. The performance of our fully automated end-to-end segmentation model based on a 3D UNet architecture and trained in two learning scenarios (on 14 or 28 patient datasets) was evaluated by two loss functions. RESULTS: Our model had an accuracy of over 90% for automatic segmentation of prostate and PCa nodules, as compared to manual segmentation. We have shown low complexity networks, UNet architecture with less than five layers, as feasible and to show good performance for automatic 3D MRI image segmentation. A larger training dataset could further improve the results. CONCLUSION: Therefore, herein, we propose a less complex network, a slim 3D UNet with superior performance, being faster than the original five-layer UNet architecture.

3.
Diagnostics (Basel) ; 13(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37189515

RESUMO

There are different breast cancer molecular subtypes with differences in incidence, treatment response and outcome. They are roughly divided into estrogen and progesterone receptor (ER and PR) negative and positive cancers. In this retrospective study, we included 185 patients augmented with 25 SMOTE patients and divided them into two groups: the training group consisted of 150 patients and the validation cohort consisted of 60 patients. Tumors were manually delineated and whole-volume tumor segmentation was used to extract first-order radiomic features. The ADC-based radiomics model reached an AUC of 0.81 in the training cohort and was confirmed in the validation set, which yielded an AUC of 0.93, in differentiating ER/PR positive from ER/PR negative status. We also tested a combined model using radiomics data together with ki67% proliferation index and histological grade, and obtained a higher AUC of 0.93, which was also confirmed in the validation group. In conclusion, whole-volume ADC texture analysis is able to predict hormonal status in breast cancer masses.

4.
Front Oncol ; 13: 1096136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969047

RESUMO

Introduction: Bladder magnetic resonance imaging (MRI) has been recently integrated in the diagnosis pathway of bladder cancer. However, automatic recognition of suspicious lesions is still challenging. Thus, development of a solution for proper delimitation of the tumor and its separation from the healthy tissue is of primordial importance. As a solution to this unmet medical need, we aimed to develop an artificial intelligence-based decision support system, which automatically segments the bladder wall and the tumor as well as any suspect area from the 3D MRI images. Materials: We retrospectively assessed all patients diagnosed with bladder cancer, who underwent MRI at our department (n=33). All examinations were performed using a 1.5 Tesla MRI scanner. All images were reviewed by two radiologists, who performed manual segmentation of the bladder wall and all lesions. First, the performance of our fully automated end-to-end segmentation model based on a 3D U-Net architecture (by considering various depths of 4, 5 or 6 blocks) trained in two data augmentation scenarios (on 5 and 10 augmentation datasets per original data, respectively) was tested. Second, two learning setups were analyzed by training the segmentation algorithm with 7 and 14 MRI original volumes, respectively. Results: We obtained a Dice-based performance over 0.878 for automatic segmentation of bladder wall and tumors, as compared to manual segmentation. A larger training dataset using 10 augmentations for 7 patients could further improve the results of the U-Net-5 model (0.902 Dice coefficient at image level). This model performed best in terms of automated segmentation of bladder, as compared to U-Net-4 and U-Net-6. However, in this case increased time for learning was needed as compared to U-Net-4. We observed that an extended dataset for training led to significantly improved segmentation of the bladder wall, but not of the tumor. Conclusion: We developed an intelligent system for bladder tumors automated diagnostic, that uses a deep learning model to segment both the bladder wall and the tumor. As a conclusion, low complexity networks, with less than five-layers U-Net architecture are feasible and show good performance for automatic 3D MRI image segmentation in patients with bladder tumors.

5.
Diagnostics (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37443692

RESUMO

(1): Background: With the recent introduction of vesical imaging reporting and data system (VI-RADS), magnetic resonance imaging (MRI) has become the main imaging method used for the preoperative local staging of bladder cancer (BCa). However, the VI-RADS score is subject to interobserver variability and cannot provide information about tumor cellularity. These limitations may be overcome by using a quantitative approach, such as the new emerging domain of radiomics. (2) Aim: To systematically review published studies on the use of MRI-based radiomics in bladder cancer. (3) Materials and Methods: We performed literature research using the PubMed MEDLINE, Scopus, and Web of Science databases using PRISMA principles. A total of 1092 papers that addressed the use of radiomics for BC staging, grading, and treatment response were retrieved using the keywords "bladder cancer", "magnetic resonance imaging", "radiomics", and "textural analysis". (4) Results: 26 papers met the eligibility criteria and were included in the final review. The principal applications of radiomics were preoperative tumor staging (n = 13), preoperative prediction of tumor grade or molecular correlates (n = 9), and prediction of prognosis/response to neoadjuvant therapy (n = 4). Most of the developed radiomics models included second-order features mainly derived from filtered images. These models were validated in 16 studies. The average radiomics quality score was 11.7, ranging between 8.33% and 52.77%. (5) Conclusions: MRI-based radiomics holds promise as a quantitative imaging biomarker of BCa characterization and prognosis. However, there is still need for improving the standardization of image preprocessing, feature extraction, and external validation before applying radiomics models in the clinical setting.

6.
J Pers Med ; 12(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743766

RESUMO

(1) Introduction: Multiparametric magnetic resonance imaging (mpMRI) is the main imagistic tool employed to assess patients suspected of harboring prostate cancer (PCa), setting the indication for targeted prostate biopsy. However, both mpMRI and targeted prostate biopsy are operator dependent. The past decade has been marked by the emerging domain of radiomics and artificial intelligence (AI), with extended application in medical diagnosis and treatment processes. (2) Aim: To present the current state of the art regarding decision support tools based on texture analysis and AI for the prediction of aggressiveness and biopsy assistance. (3) Materials and Methods: We performed literature research using PubMed MeSH, Scopus and WoS (Web of Science) databases and screened the retrieved papers using PRISMA principles. Articles that addressed PCa diagnosis and staging assisted by texture analysis and AI algorithms were included. (4) Results: 359 papers were retrieved using the keywords "prostate cancer", "MRI", "radiomics", "textural analysis", "artificial intelligence", "computer assisted diagnosis", out of which 35 were included in the final review. In total, 24 articles were presenting PCa diagnosis and prediction of aggressiveness, 7 addressed extracapsular extension assessment and 4 tackled computer-assisted targeted prostate biopsies. (5) Conclusions: The fusion of radiomics and AI has the potential of becoming an everyday tool in the process of diagnosis and staging of the prostate malignancies.

7.
Cancers (Basel) ; 14(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36497347

RESUMO

Aim: To evaluate the role of MR relaxometry and derived proton density analysis in the prediction of early treatment response after two cycles of neoadjuvant therapy (NAT), in patients with breast cancer. Methods: This was a prospective study that included 59 patients with breast cancer, who underwent breast MRI prior (MRI1) and after two cycles of NAT (MRI2). The MRI1 included a sequential acquisition with five different TE's (50, 100, 150, 200 and 250 ms) and a TR of 5000 ms. Post-processing was used to obtain the T2 relaxometry map from the MR acquisition. The tumor was delineated and seven relaxometry and proton density parameters were extracted. Additional histopathology data, T2 features and ADC were included. The response to NAT was reported based on the MRI2 as responders: partial response (>30% decreased size) and complete response (no visible tumor stable disease (SD); and non-responders: stable disease or progression (>20% increased size). Statistics was done using Medcalc software. Results: There were 50 (79.3%) patients with response and 13 (20.7%) non-responders to NAT. Age, histologic type, "in situ" component, tumor grade, estrogen and progesterone receptors, ki67% proliferation index and HER2 status were not associated with NAT response (all p > 0.05). The nodal status (N) 0 was associated with early response, while N2 was associated with non-response (p = 0.005). The tumor (T) and metastatic (M) stage were not statistically significant associated with response (p > 0.05). The margins, size and ADC values were not associated with NAT response (p-value > 0.05). The T2 min relaxometry value was associated with response (p = 0.017); a cut-off value of 53.58 obtained 86% sensitivity (95% CI 73.3−94.2), 69.23 specificity (95% CI 38.6−90.9), with an AUC = 0.715 (p = 0.038). The combined model (T2 min and N stage) achieved an AUC of 0.826 [95% CI: 0.66−0.90, p-value < 0.001]. Conclusions: MR relaxometry may be a useful tool in predicting early treatment response to NAT in breast cancer patients.

8.
Biology (Basel) ; 10(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066607

RESUMO

Different LI-RADS core documents were released for CEUS and for CT/MRI. Both documents rely on major and ancillary diagnostic criteria. The present paper offers an exhaustive comparison of the two documents focusing on the similarities, but especially on the differences, complementarity, and added value of imaging techniques in classifying liver nodules in cirrhotic livers. The major diagnostic criteria are defined, and the sensitivity and specificity of each major diagnostic criteria are presented according to the literature. The existing differences between techniques in assessing the major diagnostic features can be then exploited in order to ensure a better classification and a better clinical management of liver nodules in cirrhotic livers. Ancillary features depend on the imaging technique used, and their presence can upgrade or downgrade the LI-RADS score of an observation, but only as far as LI-RADS 4. MRI is the imaging technique that provides the greatest number of ancillary features, whereas CEUS has fewer ancillary features than other imaging techniques. In the final part of the manuscript, some recommendations are made by the authors in order to guidephysicians as to when adding another imaging technique can be helpful in managing liver nodules in cirrhotic livers.

9.
J Pers Med ; 11(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374569

RESUMO

Nuclear grade is important for treatment selection and prognosis in patients with clear cell renal cell carcinoma (ccRCC). This study aimed to determine the ability of preoperative four-phase multiphasic multidetector computed tomography (MDCT)-based radiomics features to predict the WHO/ISUP nuclear grade. In all 102 patients with histologically confirmed ccRCC, the training set (n = 62) and validation set (n = 40) were randomly assigned. In both datasets, patients were categorized according to the WHO/ISUP grading system into low-grade ccRCC (grades 1 and 2) and high-grade ccRCC (grades 3 and 4). The feature selection process consisted of three steps, including least absolute shrinkage and selection operator (LASSO) regression analysis, and the radiomics scores were developed using 48 radiomics features (10 in the unenhanced phase, 17 in the corticomedullary (CM) phase, 14 in the nephrographic (NP) phase, and 7 in the excretory phase). The radiomics score (Rad-Score) derived from the CM phase achieved the best predictive ability, with a sensitivity, specificity, and an area under the curve (AUC) of 90.91%, 95.00%, and 0.97 in the training set. In the validation set, the Rad-Score derived from the NP phase achieved the best predictive ability, with a sensitivity, specificity, and an AUC of 72.73%, 85.30%, and 0.84. We constructed a complex model, adding the radiomics score for each of the phases to the clinicoradiological characteristics, and found significantly better performance in the discrimination of the nuclear grades of ccRCCs in all MDCT phases. The highest AUC of 0.99 (95% CI, 0.92-1.00, p < 0.0001) was demonstrated for the CM phase. Our results showed that the MDCT radiomics features may play a role as potential imaging biomarkers to preoperatively predict the WHO/ISUP grade of ccRCCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA