Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 18(1): 111-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23135388

RESUMO

Neuroglobin (Ngb) is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. Another distinctive feature of most mammalian Ngb is their ability to form an internal disulfide bridge that increases ligand affinity. As often seen for prosthetic heme b containing proteins, human Ngb exhibits heme heterogeneity with two alternative heme orientations within the heme pocket. To date, no details are available on the impact of heme orientation on the binding properties of human Ngb and its interplay with the cysteine oxidation state. In this work, we used (1)H NMR spectroscopy to probe the cyanide binding properties of different Ngb species in solution, including wild-type Ngb and the single (C120S) and triple (C46G/C55S/C120S) mutants. We demonstrate that in the disulfide-containing wild-type protein cyanide ligation is fivefold faster for one of the two heme orientations (the A isomer) compared with the other isomer, which is attributed to the lower stability of the distal His64-iron bond and reduced steric hindrance at the bottom of the cavity for heme sliding in the A conformer. We also attribute the slower cyanide reactivity in the absence of a disulfide bridge to the tighter histidine-iron bond. More generally, enhanced internal mobility in the CD loop bearing the disulfide bridge hinders access of the ligand to heme iron by stabilizing the histidine-iron bond. The functional impact of heme disorder and cysteine oxidation state on the properties of the Ngb ligand is discussed.


Assuntos
Globinas/química , Globinas/metabolismo , Heme/química , Histidina , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Cianetos/metabolismo , Dissulfetos/química , Ditiotreitol/farmacologia , Globinas/genética , Humanos , Cinética , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas do Tecido Nervoso/genética , Neuroglobina , Oxirredução/efeitos dos fármacos , Ligação Proteica , Estrutura Secundária de Proteína
2.
J Am Chem Soc ; 133(22): 8753-61, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21553890

RESUMO

The internal cavity matrix of globins plays a key role in their biological function. Previous studies have already highlighted the plasticity of this inner network, which can fluctuate with the proteins breathing motion, and the importance of a few key residues for the regulation of ligand diffusion within the protein. In this Article, we combine all-atom molecular dynamics and coarse-grain Brownian dynamics to establish a complete mechanical landscape for six different globins chain (myoglobin, neuroglobin, cytoglobin, truncated hemoglobin, and chains α and ß of hemoglobin). We show that the rigidity profiles of these proteins can fluctuate along time, and how a limited set of residues present specific mechanical properties that are related to their position at the frontier between internal cavities. Eventually, we postulate the existence of conserved positions within the globin fold, which form a mechanical nucleus located at the center of the cavity network, and whose constituent residues are essential for controlling ligand migration in globins.


Assuntos
Globinas/química , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Dobramento de Proteína , Alinhamento de Sequência
3.
Heliyon ; 6(4): e03857, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32368659

RESUMO

We investigate the mechanical properties of amorphous and semi-crystalline semi-aromatic polyamides, polyphthalamides (PPA). Three relaxation processes have been identified by DMTA which is consistent with literature for polyamide. PPA exhibit a brittle-to-ductile transition from a low impact strength to a high impact strength. At room temperature, all the studied PPA are brittle. During both tensile and compression experiments, a strain hardening behavior is observed for all the studied samples and is more pronounced in compression. The testing temperature has an influence on the strain hardening modulus, contrary to the crystallinity. Strain hardening gives properties of stability and resistance to damage.

4.
J Phys Chem B ; 113(50): 16257-67, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19919085

RESUMO

Neuroglobin (Ngb), a recently discovered member of the globin family, is overexpressed in the brain tissues over oxygen deprivation. Unlike more classical globins, such as myoglobin and hemoglobin, it is characterized by a hexacoordinated heme, and its physiological role is still unknown, despite the numerous investigations made on the protein in recent years. Another important specific feature of human Ngb is the presence of two cysteine residues (Cys46 and Cys55), which are known to form an intramolecular disulfide bridge. Since previous work on human Ngb reported that its ligand binding properties could be controlled by the coordination state of the Fe(2+) atom (in the heme moiety) and the redox state of the thiol groups, we choose to develop a simulation approach combining coarse-grain Brownian dynamics and all-atom molecular dynamics and metadynamics. We have studied the diffusion of small ligands (CO, NO, and O(2)) in the globin internal cavity network for various states of human Ngb. Our results show how the structural and mechanical properties of the protein can be related to the ligand migration pathway, which can be extensively modified when changing the thiol's redox state and the iron's coordination state. We suggest that ligand binding is favored in the pentacoordinated species bearing an internal disulfide bridge.


Assuntos
Globinas/química , Ligantes , Proteínas do Tecido Nervoso/química , Difusão , Heme/química , Humanos , Simulação de Dinâmica Molecular , Neuroglobina , Oxirredução , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA