Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 62(18): 4740-4746, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37707246

RESUMO

We report on the observation and correction of an imaging artifact attributed to the Talbot effect in the context of acousto-optic imaging using structured acoustic waves. When ultrasound waves are emitted with a periodic structure, the Talbot effect produces π-phase shifts of that periodic structure at every half of the Talbot distance in propagation. This unwanted artifact is detrimental to the image reconstruction, which assumes near-field diffraction is negligible. Here, we demonstrate both theoretically and experimentally how imposing an additional phase modulation on the acoustic periodic structure induces a symmetry constraint leading to the annihilation of the Talbot effect. This will significantly improve the acousto-optic image reconstruction quality and allows for an improvement of the reachable spatial resolution of the image.

2.
Appl Opt ; 60(24): 7107-7112, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612995

RESUMO

Acousto-optic (AO) imaging is an in-depth optical imaging technique of highly scattering media. One challenging end-application for this technique is to perform imaging of living biological tissues. Indeed, because it relies on coherent illumination, AO imaging is sensitive to speckle decorrelation occurring on the millisecond time scale. Camera-based detections are well suited for in vivo imaging provided their integration time is lower than those decorrelation time scales. We present Fourier transform acousto-optic imaging combined with off-axis holography, which relies on plane waves and long-duration pulses. We demonstrate, for the first time to the best of our knowledge, a two-dimensional imaging system fully compatible with in vivo imaging prerequisites. The method is validated experimentally by performing in-depth imaging inside a multiple scattering sample.


Assuntos
Análise de Fourier , Holografia/métodos , Microscopia Acústica/instrumentação , Imagem Óptica/instrumentação , Acústica , Imagens de Fantasmas , Espalhamento de Radiação
3.
Opt Lett ; 45(17): 4855-4858, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870875

RESUMO

We present a new, to the best of our knowledge, method to perform acousto-optic imaging based on a spatiotemporal structuration of long-duration acoustic plane waves. This approach is particularly relevant when using detectors with long integration times. We show how it is possible to reconstruct an image by measuring its two-dimensional Fourier components. A proof of concept is presented using a photorefractive detection scheme, demonstrating equal performances to direct imaging. The overall acquisition time is compatible with medical monitoring applications.

4.
Appl Opt ; 58(8): 1933-1940, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30874058

RESUMO

Ultrasound-modulated optical tomography (UOT) is an imaging technique that couples light and ultrasound in order to perform in-depth imaging of highly scattering media. In previous work, we introduced plane wave UOT, an imaging method analogous to x-ray tomography based on the filtered backprojection for image reconstruction. Angle-limited measurements, however, led to drastic loss of lateral spatial resolution. Here, we present a new structured ultrasonic plane wave UOT method that allows partial recovery of the resolution. For image reconstruction, we present a generalization of the Fourier slice theorem along with a generalized filtered backprojection formalism. The method is successfully tested on simulated and experimental data.

5.
Proc Natl Acad Sci U S A ; 113(28): 7745-9, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27357672

RESUMO

Investigation of the iron phase diagram under high pressure and temperature is crucial for the determination of the composition of the cores of rocky planets and for better understanding the generation of planetary magnetic fields. Here we present X-ray diffraction results from laser-driven shock-compressed single-crystal and polycrystalline iron, indicating the presence of solid hexagonal close-packed iron up to pressure of at least 170 GPa along the principal Hugoniot, corresponding to a temperature of 4,150 K. This is confirmed by the agreement between the pressure obtained from the measurement of the iron volume in the sample and the inferred shock strength from velocimetry deductions. Results presented in this study are of the first importance regarding pure Fe phase diagram probed under dynamic compression and can be applied to study conditions that are relevant to Earth and super-Earth cores.

6.
Opt Lett ; 43(16): 3993-3996, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30106935

RESUMO

Ultrasound-modulated optical tomography (UOT) is a powerful imaging technique to discriminate healthy from unhealthy biological tissues based on their optical signature. Among the numerous detection techniques developed for acousto-optic imaging, only those based on spectral filtering are intrinsically immune to speckle decorrelation. This Letter reports on UOT imaging based on spectral hole burning in Tm:YAG crystal under a moderate magnetic field (200G) with a well-defined orientation. The deep and long-lasting holes translate into a more efficient UOT imaging with a higher contrast and faster imaging frame rate. We demonstrate the potential of this method by imaging calibrated phantom scattering gels.

7.
Opt Lett ; 43(3): 399-402, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400869

RESUMO

Diffuse optical tomography (DOT) is a reliable and widespread technique for monitoring qualitative changes in absorption inside highly scattering media. It has been shown, however, that acousto-optic (AO) imaging can provide significantly more qualitative information without the need for inversion algorithms due to the spatial resolution afforded by ultrasound probing. In this Letter, we show how, by using multiple-wavelength AO imaging, it is also possible to perform quantitative measurements of absorber concentration inside scattering media.

8.
Phys Rev Lett ; 116(18): 185001, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27203328

RESUMO

We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.

9.
Opt Lett ; 40(13): 3009-12, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26125354

RESUMO

We present a practical spatial-domain interferometer for characterizing the electronic density gradient of laser-induced plasma mirrors with sub-30-femtosecond temporal resolution. Time-resolved spatial imaging of an intensity-shaped pulse reflecting off an expanding plasma mirror induced by a time-delayed pre-pulse allows us to measure characteristic plasma gradients of 10-100 nm with an expansion velocity of 10.8 nm/ps. Spatial-domain interferometry (SDI) can be generalized to the ultrafast imaging of nm to µm size laser-induced phenomena at surfaces.

10.
Opt Lett ; 38(19): 3918-21, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24081088

RESUMO

We investigated the carrier-envelope phase (CEP) stability of hollow-fiber compression for high-energy few-cycle pulse generation. Saturation of the output pulse energy is observed at 0.6 mJ for a 260 µm inner-diameter, 1 m long fiber, statically filled with neon. The pressure is adjusted to achieve output spectra supporting sub-4-fs pulses. The maximum output pulse energy can be increased to 0.8 mJ by either differential pumping (DP) or circularly polarized input pulses. We observe the onset of an ionization-induced CEP instability, which saturates beyond input pulse energies of 1.25 mJ. There is no significant difference in the CEP stability with DP compared to static-fill.

11.
Biomed Opt Express ; 13(12): 6484-6496, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36589564

RESUMO

We present in vivo ultrasound modulated optical tomography (UOT) results on mice, using the persistent spectral hole burning (PSHB) effect in a Tm3+:YAG crystal. Indocyanine green (ICG) solution was injected as an optical absorber and was clearly identified on the PSHB-UOT images, both in the muscle (following an intramuscular injection) and in the liver (following an intravenous injection). This demonstration also validates an experimental setup with an improved level of performance combined with an increased technological maturity compared to previous demonstrations.

12.
Light Sci Appl ; 9: 47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218918

RESUMO

The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA