Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(6): 3103-3113, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980518

RESUMO

Neutrophils are the most abundant immune cells found in actively inflamed joints of patients with rheumatoid arthritis (RA), and most animal models for RA depend on neutrophils for the induction of joint inflammation. Exogenous IL-4 and IL-13 protect mice from antibody-mediated joint inflammation, although the mechanism is not understood. Neutrophils display a very strong basal expression of STAT6, which is responsible for signaling following exposure to IL-4 and IL-13. Still, the role of IL-4 and IL-13 in neutrophil biology has not been well studied. This can be explained by the low neutrophil surface expression of the IL-4 receptor α-chain (IL-4Rα), essential for IL-4- and IL-13-induced STAT6 signaling. Here we identify that colony stimulating factor 3 (CSF3), released during acute inflammation, mediates potent STAT3-dependent neutrophil IL-4Rα up-regulation during sterile inflammatory conditions. We further demonstrate that IL-4 limits neutrophil migration to inflamed joints, and that CSF3 combined with IL-4 or IL-13 results in a prominent neutrophil up-regulation of the inhibitory Fcγ receptor (FcγR2b). Taking these data together, we demonstrate that the IL-4 and CSF3 pathways are linked and play important roles in regulating proinflammatory neutrophil behavior.


Assuntos
Artrite/metabolismo , Interleucina-4 , Infiltração de Neutrófilos/fisiologia , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Animais , Modelos Animais de Doenças , Interleucina-4/genética , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
J Lipid Res ; 63(12): 100310, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370807

RESUMO

Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE2 and can lead to shunting of PGH2 into the prostaglandin D2 (PGD2)/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-glutathione (15dPGJ2-GS) and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide stimulation. Moreover, 15dPGJ2-Cys was found in lipopolysaccharide-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase, which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of microsomal glutathione S-transferase 3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.


Assuntos
Cisteína , Prostaglandinas , Camundongos , Humanos , Animais , Lipopolissacarídeos/metabolismo , Mastócitos , Prostaglandina-E Sintases/metabolismo , Macrófagos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Prostaglandina D2/farmacologia
3.
J Autoimmun ; 131: 102857, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35780036

RESUMO

Dysregulated T-cell activation is a hallmark of several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS). The lymphocyte cytosolic protein 2 (LCP2), also known as SLP-76, is essential for the development and activation of T cells. Despite the critical role of LCP2 in T-cell activation and the need for developing drugs that modify T-cell activation, no LCP2 inhibitors have been developed. This can be explained by the "undruggable" nature of LCP2, lacking a structure permissive to standard small molecule inhibitor modalities. Here, we explored an alternative drug modality, developing antisense oligonucleotides (ASOs) targeting LCP2 mRNAs, and evaluated its activity in modulating T-cell activation. We identified a set of 3' UTR targeting LCP2 ASOs, which knocked down LCP2 in a human T-cell line and primary human T cells and found that these suppressed T-cell receptor mediated activation. We also found that the ASOs suppressed FcεR1-mediated mast cell activation, in line with the role of LCP2 in mast cells. Taken together, our data provide examples of how immunomodulatory ASOs that interfere with undruggable targets can be developed and propose that such drug modalities can be used to treat autoimmune diseases.


Assuntos
Doenças Autoimunes , Oligonucleotídeos Antissenso , Linhagem Celular , Humanos , Ativação Linfocitária , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Linfócitos T
4.
Haematologica ; 105(5): 1339-1350, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31582539

RESUMO

Megakaryoblastic leukemia 1 (MKL1) is a coactivator of serum response factor and together they regulate transcription of actin cytoskeleton genes. MKL1 is associated with hematologic malignancies and immunodeficiency, but its role in B cells is unexplored. Here we examined B cells from monozygotic triplets with an intronic deletion in MKL1, two of whom had been previously treated for Hodgkin lymphoma (HL). To investigate MKL1 and B-cell responses in the pathogenesis of HL, we generated Epstein-Barr virus-transformed lymphoblastoid cell lines from the triplets and two controls. While cells from the patients with treated HL had a phenotype close to that of the healthy controls, cells from the undiagnosed triplet had increased MKL1 mRNA, increased MKL1 protein, and elevated expression of MKL1-dependent genes. This profile was associated with elevated actin content, increased cell spreading, decreased expression of CD11a integrin molecules, and delayed aggregation. Moreover, cells from the undiagnosed triplet proliferated faster, displayed a higher proportion of cells with hyperploidy, and formed large tumors in vivo This phenotype was reversible by inhibiting MKL1 activity. Interestingly, cells from the triplet treated for HL in 1985 contained two subpopulations: one with high expression of CD11a that behaved like control cells and the other with low expression of CD11a that formed large tumors in vivo similar to cells from the undiagnosed triplet. This implies that pre-malignant cells had re-emerged a long time after treatment. Together, these data suggest that dysregulated MKL1 activity participates in B-cell transformation and the pathogenesis of HL.


Assuntos
Infecções por Vírus Epstein-Barr , Doença de Hodgkin , Linfócitos B , Células Cultivadas , Herpesvirus Humano 4 , Doença de Hodgkin/genética , Humanos
5.
Cancer Res ; 82(1): 36-45, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750099

RESUMO

Inactivating p53 mutations are the most abundant genetic alterations found in cancer. Here we show that CRISPR/Cas9-induced double-stranded DNA breaks enrich for cells deficient in p53 and in genes of a core CRISPR-p53 tumor suppressor interactome. Such enrichment could predispose to cancer development and thus pose a challenge for clinical CRISPR use. Transient p53 inhibition could suppress the enrichment of cells with these mutations. The level of DNA damage response induced by an sgRNA influenced the enrichment of p53-deficient cells and could be a relevant parameter in sgRNA design to limit cellular enrichment. Furthermore, a dataset of >800 human cancer cell lines identified additional factors influencing the enrichment of p53-mutated cells, including strong baseline CDKN1A expression as a predictor for an active CRISPR-p53 axis. Taken together, these data provide details about p53 biology in the context of CRISPR-induced DNA damage and identify strategies to enable safer CRISPR use. SIGNIFICANCE: CRISPR-mediated DNA damage enriches for cells with escape mutations in a core CRISPR-p53 interactome, which can be suppressed by transient inhibition of p53.


Assuntos
Sistemas CRISPR-Cas/genética , Dano ao DNA/genética , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Mutação , Transfecção
6.
Comput Struct Biotechnol J ; 19: 5360-5370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745454

RESUMO

CRISPR/Cas9 can be used as an experimental tool to inactivate genes in cells. However, a CRISPR-targeted cell population will not show a uniform genotype of the targeted gene. Instead, a mix of genotypes is generated - from wild type to different forms of insertions and deletions. Such mixed genotypes complicate analysis of the role of the targeted gene in the studied cell population. Here, we present a rapid and universal experimental approach to functionally analyze a CRISPR-targeted cell population that does not involve generating clonal lines. As a simple readout, we leverage the CRISPR-induced genetic heterogeneity and use sequencing to identify how different genotypes are enriched or depleted in relation to the studied cellular behavior or phenotype. The approach uses standard PCR, Sanger sequencing, and a simple sequence deconvoluting software, enabling laboratories without specific in-depth experience to perform these experiments. As proof of principle, we present examples studying various aspects related to hematopoietic cells (T cell development in vivo and activation in vitro, differentiation of macrophages and dendritic cells, as well as a leukemia-like phenotype induced by overexpressing a proto-oncogene). In conclusion, we present a rapid experimental approach to identify potential drug targets related to mature immune cells, as well as normal and malignant hematopoiesis.

7.
J Transl Autoimmun ; 4: 100087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33768201

RESUMO

Recent advances in single-cell sequencing technologies enable the generation of large-scale data sets of paired TCR sequences from patients with autoimmune disease. Methods to validate and characterize patient-derived TCR data are needed, as well as relevant model systems that can support the development of antigen-specific tolerance inducing drugs. We have generated a pipeline to allow streamlined generation of 'artificial' T cells in a robust and reasonably high throughput manner for in vitro and in vivo studies of antigen-specific and patient-derived immune responses. Hereby chimeric (mouse-human) TCR alpha and beta constructs are re-expressed in three different formats for further studies: (i) transiently in HEK cells for peptide-HLA tetramer validation experiments, (ii) stably in the TCR-negative 58 â€‹T cell line for functional readouts such as IL-2 production and NFAT-signaling, and lastly (iii) in human HLA-transgenic mice for studies of autoimmune disease and therapeutic interventions. As a proof of concept, we have used human HLA-DRB1∗04:01 restricted TCR sequences specific for a type I diabetes-associated GAD peptide, and an influenza-derived HA peptide. We show that the same chimeric TCR constructs can be used in each of the described assays facilitating sequential validation and prioritization steps leading to humanized animal models.

8.
Biomedicines ; 9(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440166

RESUMO

Humanized mouse models generated with human hematopoietic stem cells (HSCs) and reconstituting the human immune system (HIS-mice) are invigorating preclinical testing of vaccines and immunotherapies. We have recently shown that human engineered dendritic cells boosted bonafide human T and B cell maturation and antigen-specific responses in HIS-mice. Here, we evaluated a cell-free system based on in vivo co-delivery of lentiviral vectors (LVs) for expression of a human leukocyte antigen (HLA-DRA*01/ HLA-DRB1*0401 functional complex, "DR4"), and a LV vaccine expressing human cytokines (GM-CSF and IFN-α) and a human cytomegalovirus gB antigen (HCMV-gB). Humanized NOD/Rag1null/IL2Rγnull (NRG) mice injected by i.v. with LV-DR4/fLuc showed long-lasting (up to 20 weeks) vector distribution and expression in the spleen and liver. In vivo administration of the LV vaccine after LV-DR4/fLuc delivery boosted the cellularity of lymph nodes, promoted maturation of terminal effector CD4+ T cells, and promoted significantly higher development of IgG+ and IgA+ B cells. This modular lentigenic system opens several perspectives for basic human immunology research and preclinical utilization of LVs to deliver HLAs into HIS-mice.

9.
Comput Struct Biotechnol J ; 18: 2237-2246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32952937

RESUMO

Over the last decade Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) has been developed into a potent molecular biology tool used to rapidly modify genes or their expression in a multitude of ways. In parallel, CRISPR-based screening approaches have been developed as powerful discovery platforms for dissecting the genetic basis of cellular behavior, as well as for drug target discovery. CRISPR screens can be designed in numerous ways. Here, we give a brief background to CRISPR screens and discuss the pros and cons of different design approaches, including unbiased genome-wide screens that target all known genes, as well as hypothesis-driven custom screens in which selected subsets of genes are targeted (Fig. 1). We provide several suggestions for how a custom screen can be designed, which could broadly serve as inspiration for any experiment that includes candidate gene selection. Finally, we discuss how results from CRISPR screens could be translated into drug development, as well as future trends we foresee in the rapidly evolving CRISPR screen field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA