Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2001): 20230640, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37357857

RESUMO

Deep-sea cephalopods are diverse, abundant, and poorly understood. The Cirrata are gelatinous finned octopods and among the deepest-living cephalopods ever recorded. Their natural feeding behaviour remains undocumented. During deep-sea surveys in the Arctic, we observed Cirroteuthis muelleri. Octopods were encountered with their web spread wide, motionless and drifting in the water column 500-2600 m from the seafloor. Individuals of C. muelleri were also repeatedly observed on the seafloor where they exhibited a repeated, behavioural sequence interpreted as feeding. The sequence (11-21 s) consisted of arm web spreading, enveloping and retreating. Prey capture happened during the enveloping phase and lasted 5-49 s. Numerous traces of feeding activity were also observed on the seafloor. The utilization of the water column for drifting and the deep seafloor for feeding is a novel migration behaviour for cephalopods, but known from gelatinous fishes and holothurians. By benthic feeding, the octopods benefit from the enhanced nutrient availability on the seafloor. Drifting in the water column may be an energetically efficient way of transportation while simultaneously avoiding seafloor-associated predators. In situ observations are indispensable to discover the behaviour of abundant megafauna, and the energetic coupling between the pelagic and benthic deep sea.


Assuntos
Almoço , Octopodiformes , Animais , Peixes , Comportamento Alimentar , Água , Ecossistema
2.
Curr Biol ; 32(4): 842-850.e4, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35030328

RESUMO

A breeding colony of notothenioid icefish (Neopagetopsis ionah, Nybelin 1947) of globally unprecedented extent has been discovered in the southern Weddell Sea, Antarctica. The colony was estimated to cover at least ∼240 km2 of the eastern flank of the Filchner Trough, comprised of fish nests at a density of 0.26 nests per square meter, representing an estimated total of ∼60 million active nests and associated fish biomass of >60,000 tonnes. The majority of nests were each occupied by 1 adult fish guarding 1,735 eggs (±433 SD). Bottom water temperatures measured across the nesting colony were up to 2°C warmer than the surrounding bottom waters, indicating a spatial correlation between the modified Warm Deep Water (mWDW) upflow onto the Weddell Shelf and the active nesting area. Historical and concurrently collected seal movement data indicate that this concentrated fish biomass may be utilized by predators such as Weddell seals (Leptonychotes weddellii, Lesson 1826). Numerous degraded fish carcasses within and near the nesting colony suggest that, in death as well as life, these fish provide input for local food webs and influence local biogeochemical processing. To our knowledge, the area surveyed harbors the most spatially expansive continuous fish breeding colony discovered to date globally at any depth, as well as an exceptionally high Antarctic seafloor biomass. This discovery provides support for the establishment of a regional marine protected area in the Southern Ocean under the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) umbrella. VIDEO ABSTRACT.


Assuntos
Focas Verdadeiras , Animais , Regiões Antárticas , Peixes , Cadeia Alimentar , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA