Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2123301120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827261

RESUMO

Dehydrodiconiferyl alcohol glucoside (DCG) is a phenylpropanoid-derived plant metabolite with reported cytokinin-substituting and cell-division-promoting activity. Despite its claimed activity, DCG did not trigger morphological changes in Arabidopsis seedlings nor did it alter transcriptional shifts in cell division and cytokinin-responsive genes. In reinvestigating the bioactivity of DCG in its original setting, the previously described stimulation of tobacco callus formation could not be confirmed. No evidence was found that DCG is actually taken up by plant cells, which could explain the absence of any observable activity in the performed experiments. The DCG content in plant tissue increased when feeding explants with the DCG aglycone dehydrodiconiferyl alcohol, which is readily taken up and converted to DCG by plant cells. Despite the increased DCG content, no activity for this metabolite could be demonstrated. Our results therefore demand a reevaluation of the often-quoted cytokinin-substituting and cell-division-promoting activity that has previously been attributed to this metabolite.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas/metabolismo , Glucosídeos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 194(3): 1370-1382, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773018

RESUMO

Lignin is an abundant polymer in plant secondary cell walls. Prototypical lignins derive from the polymerization of monolignols (hydroxycinnamyl alcohols), mainly coniferyl and sinapyl alcohol, via combinatorial radical coupling reactions and primarily via the endwise coupling of a monomer with the phenolic end of the growing polymer. Hydroxycinnamaldehyde units have long been recognized as minor components of lignins. In plants deficient in cinnamyl alcohol dehydrogenase, the last enzyme in the monolignol biosynthesis pathway that reduces hydroxycinnamaldehydes to monolignols, chain-incorporated aldehyde unit levels are elevated. The nature and relative levels of aldehyde components in lignins can be determined from their distinct and dispersed correlations in 2D 1H-13C-correlated nuclear magnetic resonance (NMR) spectra. We recently became aware of aldehyde NMR peaks, well resolved from others, that had been overlooked. NMR of isolated low-molecular-weight oligomers from biomimetic radical coupling reactions involving coniferaldehyde revealed that the correlation peaks belonged to hydroxycinnamaldehyde-derived benzofuran moieties. Coniferaldehyde 8-5-coupling initially produces the expected phenylcoumaran structures, but the derived phenolic radicals undergo preferential disproportionation rather than radical coupling to extend the growing polymer. As a result, the hydroxycinnamaldehyde-derived phenylcoumaran units are difficult to detect in lignins, but the benzofurans are now readily observed by their distinct and dispersed correlations in the aldehyde region of NMR spectra from any lignin or monolignol dehydrogenation polymer. Hydroxycinnamaldehydes that are coupled to coniferaldehyde can be distinguished from those coupled with a generic guaiacyl end-unit. These benzofuran peaks may now be annotated and reported and their structural ramifications further studied.


Assuntos
Acroleína/análogos & derivados , Benzofuranos , Cinamatos , Lignina , Lignina/metabolismo , Aldeídos , Polímeros
3.
Plant Physiol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771246

RESUMO

Lignin is a phenolic polymer in plants that rigidifies the cell walls of water-conducting tracheary elements and support-providing fibers and stone cells. Different mechanisms have been suggested for the transport of lignin precursors to the site of lignification in the cell wall. Extracellular vesicle (EV)-enriched samples isolated from a lignin-forming cell suspension culture of Norway spruce (Picea abies L. Karst.) contained both phenolic metabolites and enzymes related to lignin biosynthesis. Metabolomic analysis revealed mono-, di- and oligolignols in the EV isolates, as well as carbohydrates and amino acids. In addition, salicylic acid (SA) and some proteins involved in SA signaling were detected in the EV-enriched samples. A proteomic analysis detected several laccases, peroxidases, ß-glucosidases, putative dirigent proteins, and cell wall-modifying enzymes such as glycosyl hydrolases, transglucosylase/hydrolases, and expansins in EVs. Our findings suggest that EVs are involved in transporting enzymes required for lignin polymerization in Norway spruce, and that radical coupling of monolignols can occur in these vesicles.

4.
Plant J ; 115(2): 470-479, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37036146

RESUMO

Chemical inhibitors are often implemented for the functional characterization of genes to overcome the limitations associated with genetic approaches. Although it is well established that the specificity of the compound is key to success of a pharmacological approach, off-target effects are often overlooked or simply neglected in a complex biological setting. Here we illustrate the cause and implications of such secondary effects by focusing on piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H) that is frequently used to investigate the involvement of lignin during plant growth and development. When supplied to plants, we found that PA is recognized as a substrate by GRETCHEN HAGEN 3.6 (GH3.6), an amido synthetase involved in the formation of the indole-3-acetic acid (IAA) conjugate IAA-Asp. By competing for the same enzyme, PA interferes with IAA conjugation, resulting in an increase in IAA concentrations in the plant. In line with the broad substrate specificity of the GH3 family of enzymes, treatment with PA increased not only IAA levels but also those of other GH3-conjugated phytohormones, namely jasmonic acid and salicylic acid. Finally, we found that interference with the endogenous function of GH3s potentially contributes to phenotypes previously observed upon PA treatment. We conclude that deregulation of phytohormone homeostasis by surrogate occupation of the conjugation machinery in the plant is likely a general phenomenon when using chemical inhibitors. Our results hereby provide a novel and important basis for future reference in studies using chemical inhibitors.


Assuntos
Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Ácidos Indolacéticos/farmacologia , Benzoatos , Oxigenases de Função Mista/genética , Cinamatos/farmacologia , Regulação da Expressão Gênica de Plantas
5.
New Phytol ; 243(2): 526-536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803120

RESUMO

Forests make immense contributions to societies in the form of ecological services and sustainable industrial products. However, they face major challenges to their viability and economic use due to climate change and growing biotic and economic threats, for which recombinant DNA (rDNA) technology can sometimes provide solutions. But the application of rDNA technologies to forest trees faces major social and biological obstacles that make its societal acceptance a 'wicked' problem without straightforward solutions. We discuss the nature of these problems, and the social and biological innovations that we consider essential for progress. As case studies of biological challenges, we focus on studies of modifications in wood chemistry and transformation efficiency. We call for major innovations in regulations, and the dissolution of method-based market barriers, that together could lead to greater research investments, enable wide use of field studies, and facilitate the integration of rDNA-modified trees into conventional breeding programs. Without near-term adoption of such innovations, rDNA-based solutions will be largely unavailable to help forests adapt to the growing stresses from climate change and the proliferation of forest pests, nor will they be available to provide economic and environmental benefits from expanded use of wood and related bioproducts as part of an expanding bioeconomy.


Assuntos
Biotecnologia , Florestas , Biotecnologia/métodos , Madeira , Árvores , Mudança Climática
6.
Plant Physiol ; 192(4): 3001-3016, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37139862

RESUMO

Arabidopsis (Arabidopsis thaliana) transfer DNA (T-DNA) insertion collections are popular resources for fundamental plant research. Cinnamoyl-CoA reductase 1 (CCR1) catalyzes an essential step in the biosynthesis of the cell wall polymer lignin. Accordingly, the intronic T-DNA insertion mutant ccr1-6 has reduced lignin levels and shows a stunted growth phenotype. Here, we report restoration of the ccr1-6 mutant phenotype and CCR1 expression levels after a genetic cross with a UDP-glucosyltransferase 72e1 (ugt72e1),-e2,-e3 T-DNA mutant. We discovered that the phenotypic recovery was not dependent on the UGT72E family loss of function but due to an epigenetic phenomenon called trans T-DNA suppression. Via trans T-DNA suppression, the gene function of an intronic T-DNA mutant was restored after the introduction of an additional T-DNA sharing identical sequences, leading to heterochromatinization and splicing out of the T-DNA-containing intron. Consequently, the suppressed ccr1-6 allele was named epiccr1-6. Long-read sequencing revealed that epiccr1-6, not ccr1-6, carries dense cytosine methylation over the full length of the T-DNA. We showed that the SAIL T-DNA in the UGT72E3 locus could trigger the trans T-DNA suppression of the GABI-Kat T-DNA in the CCR1 locus. Furthermore, we scanned the literature for other potential cases of trans T-DNA suppression in Arabidopsis and found that 22% of the publications matching our query report on double or higher-order T-DNA mutants that meet the minimal requirements for trans T-DNA suppression. These combined observations indicate that intronic T-DNA mutants need to be used with caution since methylation of intronic T-DNA might derepress gene expression and can thereby confound results.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Lignina/metabolismo , Mutação/genética , DNA Bacteriano/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigênese Genética , Glucosiltransferases/metabolismo
7.
Plant J ; 109(5): 1152-1167, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862679

RESUMO

The intricate architecture of cell walls and the complex cross-linking of their components hinders some industrial and agricultural applications of plant biomass. Xylan is a key structural element of grass cell walls, closely interacting with other cell wall components such as cellulose and lignin. The main branching points of grass xylan, 3-linked l-arabinosyl substitutions, can be modified by ferulic acid (a hydroxycinnamic acid), which cross-links xylan to other xylan chains and lignin. XAX1 (Xylosyl arabinosyl substitution of xylan 1), a rice (Oryza sativa) member of the glycosyltransferase family GT61, has been described to add xylosyl residues to arabinosyl substitutions modified by ferulic acid. In this study, we characterize hydroxycinnamic acid-decorated arabinosyl substitutions present on rice xylan and their cross-linking, in order to decipher the role of XAX1 in xylan synthesis. Our results show a general reduction of hydroxycinnamic acid-modified 3-linked arabinosyl substitutions in xax1 mutant rice regardless of their modification with a xylosyl residue. Moreover, structures resembling the direct cross-link between xylan and lignin (ferulated arabinosyl substitutions bound to lignin monomers and dimers), together with diferulates known to cross-link xylan, are strongly reduced in xax1. Interestingly, apart from feruloyl and p-coumaroyl modifications on arabinose, putative caffeoyl and oxalyl modifications were characterized, which were also reduced in xax1. Our results suggest an alternative function of XAX1 in the transfer of hydroxycinnamic acid-modified arabinosyl substitutions to xylan, rather than xylosyl transfer to arabinosyl substitutions. Ultimately, XAX1 plays a fundamental role in cross-linking, providing a potential target for the improvement of use of grass biomass.


Assuntos
Oryza , Xilanos , Parede Celular/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Oryza/genética , Oryza/metabolismo , Poaceae/metabolismo , Xilanos/metabolismo
8.
Plant J ; 110(2): 358-376, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35044002

RESUMO

Lignin is a phenolic polymer deposited in the plant cell wall, and is mainly polymerized from three canonical monomers (monolignols), i.e. p-coumaryl, coniferyl and sinapyl alcohols. After polymerization, these alcohols form different lignin substructures. In dicotyledons, monolignols are biosynthesized from phenylalanine, an aromatic amino acid. Shikimate acts at two positions in the route to the lignin building blocks. It is part of the shikimate pathway that provides the precursor for the biosynthesis of phenylalanine, and is involved in the transesterification of p-coumaroyl-CoA to p-coumaroyl shikimate, one of the key steps in the biosynthesis of coniferyl and sinapyl alcohols. The shikimate residue in p-coumaroyl shikimate is released in later steps, and the resulting shikimate becomes available again for the biosynthesis of new p-coumaroyl shikimate molecules. In this study, we inhibited cytosolic shikimate recycling in transgenic hybrid aspen by accelerated phosphorylation of shikimate in the cytosol through expression of a bacterial shikimate kinase (SK). This expression elicited an increase in p-hydroxyphenyl units of lignin and, by contrast, a decrease in guaiacyl and syringyl units. Transgenic plants with high SK activity produced a lignin content comparable to that in wild-type plants, and had an increased processability via enzymatic saccharification. Although expression of many genes was altered in the transgenic plants, elevated SK activity did not exert a significant effect on the expression of the majority of genes responsible for lignin biosynthesis. The present results indicate that cytosolic shikimate recycling is crucial to the monomeric composition of lignin rather than for lignin content.


Assuntos
Vias Biossintéticas , Lignina , Álcoois/metabolismo , Vias Biossintéticas/genética , Citosol/metabolismo , Lignina/metabolismo , Fenilalanina/metabolismo , Plantas Geneticamente Modificadas/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(6): 3281-3290, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31974310

RESUMO

There is considerable interest in engineering plant cell wall components, particularly lignin, to improve forage quality and biomass properties for processing to fuels and bioproducts. However, modifying lignin content and/or composition in transgenic plants through down-regulation of lignin biosynthetic enzymes can induce expression of defense response genes in the absence of biotic or abiotic stress. Arabidopsis thaliana lines with altered lignin through down-regulation of hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) or loss of function of cinnamoyl CoA reductase 1 (CCR1) express a suite of pathogenesis-related (PR) protein genes. The plants also exhibit extensive cell wall remodeling associated with induction of multiple cell wall-degrading enzymes, a process which renders the corresponding biomass a substrate for growth of the cellulolytic thermophile Caldicellulosiruptor bescii lacking a functional pectinase gene cluster. The cell wall remodeling also results in the release of size- and charge-heterogeneous pectic oligosaccharide elicitors of PR gene expression. Genetic analysis shows that both in planta PR gene expression and release of elicitors are the result of ectopic expression in xylem of the gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1), which is normally expressed during anther and silique dehiscence. These data highlight the importance of pectin in cell wall integrity and the value of lignin modification as a tool to interrogate the informational content of plant cell walls.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Lignina/metabolismo , Caules de Planta/metabolismo , Poligalacturonase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Pectinas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Poligalacturonase/genética
10.
Plant J ; 108(3): 752-765, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403547

RESUMO

Lignin is one of the main factors determining recalcitrance to processing of lignocellulosic biomass towards bio-based materials and fuels. Consequently, wood of plants engineered for low lignin content is typically more amenable to processing. However, lignin-modified plants often exhibit collapsed vessels and associated growth defects. Vessel-specific reintroduction of lignin biosynthesis in dwarfed low-lignin cinnamoyl-CoA reductase1 (ccr1) Arabidopsis mutants using the ProSNBE:AtCCR1 construct overcame the yield penalty while maintaining high saccharification yields, and showed that monolignols can be transported between the different xylem cells acting as 'good neighbors' in Arabidopsis. Here, we translated this research into the bio-energy crop poplar. By expressing ProSNBE:AtCCR1 into CRISPR/Cas9-generated ccr2 poplars, we aimed for vessel-specific lignin biosynthesis to: (i) achieve growth restoration while maintaining high saccharification yields; and (ii) study the existence of 'good neighbors' in poplar wood. Analyzing the resulting ccr2 ProSNBE:AtCCR1 poplars showed that vessels and rays act as good neighbors for lignification in poplar. If sufficient monolignols are produced by these cells, monolignols migrate over multiple cell layers, resulting in a restoration of the lignin amount to wild-type levels. If the supply of monolignols is limited, the monolignols are incorporated into the cell walls of the vessels and rays producing them and their adjoining cells resulting in fiber hypolignification. One such fiber-hypolignified line had 18% less lignin and, despite its small yield penalty, had an increase of up to 71% in sugar release on a plant base upon saccharification.


Assuntos
Lignina/metabolismo , Populus/genética , Populus/metabolismo , Açúcares/metabolismo , Aldeído Oxirredutases/genética , Sistemas CRISPR-Cas , Parede Celular/genética , Parede Celular/ultraestrutura , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Lignina/biossíntese , Caules de Planta/citologia , Caules de Planta/genética , Plantas Geneticamente Modificadas , Populus/crescimento & desenvolvimento
11.
Plant J ; 105(5): 1240-1257, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33258151

RESUMO

Lignocellulosic biomass is an abundant byproduct from cereal crops that can potentially be valorized as a feedstock to produce biomaterials. Zea mays CINNAMYL ALCOHOL DEHYDROGENASE 2 (ZmCAD2) is involved in lignification, and is a promising target to improve the cellulose-to-glucose conversion of maize stover. Here, we analyzed a field-grown zmcad2 Mutator transposon insertional mutant. Zmcad2 mutant plants had an 18% lower Klason lignin content, whereas their cellulose content was similar to that of control lines. The lignin in zmcad2 mutants contained increased levels of hydroxycinnamaldehydes, i.e. the substrates of ZmCAD2, ferulic acid and tricin. Ferulates decorating hemicelluloses were not altered. Phenolic profiling further revealed that hydroxycinnamaldehydes are partly converted into (dihydro)ferulic acid and sinapic acid and their derivatives in zmcad2 mutants. Syringyl lactic acid hexoside, a metabolic sink in CAD-deficient dicot trees, appeared not to be a sink in zmcad2 maize. The enzymatic cellulose-to-glucose conversion efficiency was determined after 10 different thermochemical pre-treatments. Zmcad2 yielded significantly higher conversions compared with controls for almost every pre-treatment. However, the relative increase in glucose yields after alkaline pre-treatment was not higher than the relative increase when no pre-treatment was applied, suggesting that the positive effect of the incorporation of hydroxycinnamaldehydes was leveled off by the negative effect of reduced p-coumarate levels in the cell wall. Taken together, our results reveal how phenolic metabolism is affected in CAD-deficient maize, and further support mutating CAD genes in cereal crops as a promising strategy to improve lignocellulosic biomass for sugar-platform biorefineries.


Assuntos
Oxirredutases do Álcool/metabolismo , Zea mays/metabolismo , Oxirredutases do Álcool/genética , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Metabolômica/métodos , Zea mays/genética
12.
New Phytol ; 236(6): 2075-2090, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35808905

RESUMO

Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse-grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol-specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1-yr-old hpCAD wood had 10% less lignin, 3-yr-old hpCAD wood had wild-type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1-yr-old and 3-yr-old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD-deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.


Assuntos
Lignina , Populus , Populus/genética , Oxirredutases do Álcool , Biomassa
13.
J Exp Bot ; 73(18): 6307-6333, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35788296

RESUMO

The molecular mechanisms associated with secondary cell wall (SCW) deposition in sorghum remain largely uncharacterized. Here, we employed untargeted metabolomics and large-scale transcriptomics to correlate changes in SCW deposition with variation in global gene expression profiles and metabolite abundance along an elongating internode of sorghum, with a major focus on lignin and phenolic metabolism. To gain deeper insight into the metabolic and transcriptional changes associated with pathway perturbations, a bmr6 mutant [with reduced cinnamyl alcohol dehydrogenase (CAD) activity] was analyzed. In the wild type, internode development was accompanied by an increase in the content of oligolignols, p-hydroxybenzaldehyde, hydroxycinnamate esters, and flavonoid glucosides, including tricin derivatives. We further identified modules of genes whose expression pattern correlated with SCW deposition and the accumulation of these target metabolites. Reduced CAD activity resulted in the accumulation of hexosylated forms of hydroxycinnamates (and their derivatives), hydroxycinnamaldehydes, and benzenoids. The expression of genes belonging to one specific module in our co-expression analysis correlated with the differential accumulation of these compounds and contributed to explaining this metabolic phenotype. Metabolomics and transcriptomics data further suggested that CAD perturbation activates distinct detoxification routes in sorghum internodes. Our systems biology approach provides a landscape of the metabolic and transcriptional changes associated with internode development and with reduced CAD activity in sorghum.


Assuntos
Sorghum , Sorghum/genética , Sorghum/metabolismo , Lignina/metabolismo , Regulação da Expressão Gênica de Plantas , Grão Comestível/metabolismo , Flavonoides/metabolismo , Glucosídeos/metabolismo , Ésteres/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(46): 23117-23123, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659054

RESUMO

Lignin is an abundant aromatic polymer found in plant secondary cell walls. In recent years, lignin has attracted renewed interest as a feedstock for bio-based chemicals via catalytic and biological approaches and has emerged as a target for genetic engineering to improve lignocellulose digestibility by altering its composition. In lignin biosynthesis and microbial conversion, small phenolic lignin precursors or degradation products cross membrane bilayers through an unidentified translocation mechanism prior to incorporation into lignin polymers (synthesis) or catabolism (bioconversion), with both passive and transporter-assisted mechanisms postulated. To test the passive permeation potential of these phenolics, we performed molecular dynamics simulations for 69 monomeric and dimeric lignin-related phenolics with 3 model membranes to determine the membrane partitioning and permeability coefficients for each compound. The results support an accessible passive permeation mechanism for most compounds, including monolignols, dimeric phenolics, and the flavonoid, tricin. Computed lignin partition coefficients are consistent with concentration enrichment near lipid carbonyl groups, and permeability coefficients are sufficient to keep pace with cellular metabolism. Interactions between methoxy and hydroxy groups are found to reduce membrane partitioning and improve permeability. Only carboxylate-modified or glycosylated lignin phenolics are predicted to require transporters for membrane translocation. Overall, the results suggest that most lignin-related compounds can passively traverse plant and microbial membranes on timescales commensurate with required biological activities, with any potential transport regulation mechanism in lignin synthesis, catabolism, or bioconversion requiring compound functionalization.


Assuntos
Membrana Celular/metabolismo , Lignina/metabolismo , Difusão , Simulação de Dinâmica Molecular
15.
Plant Biotechnol J ; 19(11): 2221-2234, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160888

RESUMO

Lignins are cell wall-located aromatic polymers that provide strength and hydrophobicity to woody tissues. Lignin monomers are synthesized via the phenylpropanoid pathway, wherein CAFFEOYL SHIKIMATE ESTERASE (CSE) converts caffeoyl shikimate into caffeic acid. Here, we explored the role of the two CSE homologs in poplar (Populus tremula × P. alba). Reporter lines showed that the expression conferred by both CSE1 and CSE2 promoters is similar. CRISPR-Cas9-generated cse1 and cse2 single mutants had a wild-type lignin level. Nevertheless, CSE1 and CSE2 are not completely redundant, as both single mutants accumulated caffeoyl shikimate. In contrast, the cse1 cse2 double mutants had a 35% reduction in lignin and associated growth penalty. The reduced-lignin content translated into a fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Phenolic profiling of the double mutants revealed large metabolic shifts, including an accumulation of p-coumaroyl, 5-hydroxyferuloyl, feruloyl and sinapoyl shikimate, in addition to caffeoyl shikimate. This indicates that the CSEs have a broad substrate specificity, which was confirmed by in vitro enzyme kinetics. Taken together, our results suggest an alternative path within the phenylpropanoid pathway at the level of the hydroxycinnamoyl-shikimates, and show that CSE is a promising target to improve plants for the biorefinery.


Assuntos
Populus , Sistemas CRISPR-Cas/genética , Carboxilesterase , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo
16.
New Phytol ; 230(6): 2275-2291, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33728703

RESUMO

The phenylpropanoid pathway serves a central role in plant metabolism, providing numerous compounds involved in diverse physiological processes. Most carbon entering the pathway is incorporated into lignin. Although several phenylpropanoid pathway mutants show seedling growth arrest, the role for lignin in seedling growth and development is unexplored. We use complementary pharmacological and genetic approaches to block CINNAMATE-4-HYDROXYLASE (C4H) functionality in Arabidopsis seedlings and a set of molecular and biochemical techniques to investigate the underlying phenotypes. Blocking C4H resulted in reduced lateral rooting and increased adventitious rooting apically in the hypocotyl. These phenotypes coincided with an inhibition in AUX transport. The upstream accumulation in cis-cinnamic acid was found to be likely to cause polar AUX transport inhibition. Conversely, a downstream depletion in lignin perturbed phloem-mediated AUX transport. Restoring lignin deposition effectively reestablished phloem transport and, accordingly, AUX homeostasis. Our results show that the accumulation of bioactive intermediates and depletion in lignin jointly cause the aberrant phenotypes upon blocking C4H, and demonstrate that proper deposition of lignin is essential for the establishment of AUX distribution in seedlings. Our data position the phenylpropanoid pathway and lignin in a new physiological framework, consolidating their importance in plant growth and development.


Assuntos
Cinamatos , Plântula , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plântula/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
17.
Plant Physiol ; 183(1): 123-136, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139476

RESUMO

The lignin biosynthetic pathway is highly conserved in angiosperms, yet pathway manipulations give rise to a variety of taxon-specific outcomes. Knockout of lignin-associated 4-coumarate:CoA ligases (4CLs) in herbaceous species mainly reduces guaiacyl (G) lignin and enhances cell wall saccharification. Here we show that CRISPR-knockout of 4CL1 in poplar (Populus tremula × alba) preferentially reduced syringyl (S) lignin, with negligible effects on biomass recalcitrance. Concordant with reduced S-lignin was downregulation of ferulate 5-hydroxylases (F5Hs). Lignification was largely sustained by 4CL5, a low-affinity paralog of 4CL1 typically with only minor xylem expression or activity. Levels of caffeate, the preferred substrate of 4CL5, increased in line with significant upregulation of caffeoyl shikimate esterase1 Upregulation of caffeoyl-CoA O-methyltransferase1 and downregulation of F5Hs are consistent with preferential funneling of 4CL5 products toward G-lignin biosynthesis at the expense of S-lignin. Thus, transcriptional and metabolic adaptations to 4CL1-knockout appear to have enabled 4CL5 catalysis at a level sufficient to sustain lignification. Finally, genes involved in sulfur assimilation, the glutathione-ascorbate cycle, and various antioxidant systems were upregulated in the mutants, suggesting cascading responses to perturbed thioesterification in lignin biosynthesis.


Assuntos
Lignina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Xilema/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Catálise , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Xilema/genética
18.
New Phytol ; 225(5): 1923-1935, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31625609

RESUMO

PIRIN (PRN) genes encode cupin domain-containing proteins that function as transcriptional co-regulators in humans but that are poorly described in plants. A previous study in xylogenic cell cultures of Zinnia elegans suggested a role for a PRN protein in lignification. This study aimed to identify the function of Arabidopsis (Arabidopsis thaliana) PRN proteins in lignification of xylem tissues. Chemical composition of the secondary cell walls was analysed in Arabidopsis stems and/or hypocotyls by pyrolysis-gas chromatography/mass spectrometry, 2D-nuclear magnetic resonance and phenolic profiling. Secondary cell walls of individual xylem elements were chemotyped by Fourier transform infrared and Raman microspectroscopy. Arabidopsis PRN2 suppressed accumulation of S-type lignin in Arabidopsis stems and hypocotyls. PRN2 promoter activity and PRN2:GFP fusion protein were localised specifically in cells next to the vessel elements, suggesting a role for PRN2 in noncell-autonomous lignification of xylem vessels. Accordingly, PRN2 modulated lignin chemistry in the secondary cell walls of the neighbouring vessel elements. These results indicate that PRN2 suppresses S-type lignin accumulation in the neighbourhood of xylem vessels to bestow G-type enriched lignin composition on the secondary cell walls of the vessel elements. Gene expression analyses suggested that PRN2 function is mediated by regulation of the expression of the lignin-biosynthetic genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Xilema/metabolismo
19.
Plant Physiol ; 179(1): 74-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30301776

RESUMO

Polyploidization has played a key role in plant breeding and crop improvement. Although its potential to increase biomass yield is well described, the effect of polyploidization on biomass composition has largely remained unexplored. Here, we generated a series of Arabidopsis (Arabidopsis thaliana) plants with different somatic ploidy levels (2n, 4n, 6n, and 8n) and performed rigorous phenotypic characterization. Kinematic analysis showed that polyploids developed slower compared to diploids; however, tetra- and hexaploids, but not octaploids, generated larger rosettes due to delayed flowering. In addition, morphometric analysis of leaves showed that polyploidy affected epidermal pavement cells, with increased cell size and reduced cell number per leaf blade with incrementing ploidy. However, the inflorescence stem dry weight was highest in tetraploids. Cell wall characterization revealed that the basic somatic ploidy level negatively correlated with lignin and cellulose content, and positively correlated with matrix polysaccharide content (i.e. hemicellulose and pectin) in the stem tissue. In addition, higher ploidy plants displayed altered sugar composition. Such effects were linked to the delayed development of polyploids. Moreover, the changes in polyploid cell wall composition promoted saccharification yield. The results of this study indicate that induction of polyploidy is a promising breeding strategy to further tailor crops for biomass production.


Assuntos
Arabidopsis/genética , Desenvolvimento Vegetal/genética , Poliploidia , Arabidopsis/crescimento & desenvolvimento , Biomassa , Parede Celular/genética , Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Fenótipo , Folhas de Planta
20.
Plant Cell Environ ; 43(9): 2172-2191, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441772

RESUMO

Although cell wall polymers play important roles in the tolerance of plants to abiotic stress, the effects of salinity on cell wall composition and metabolism in grasses remain largely unexplored. Here, we conducted an in-depth study of changes in cell wall composition and phenolic metabolism induced upon salinity in maize seedlings and plants. Cell wall characterization revealed that salt stress modulated the deposition of cellulose, matrix polysaccharides and lignin in seedling roots, plant roots and stems. The extraction and analysis of arabinoxylans by size-exclusion chromatography, 2D-NMR spectroscopy and carbohydrate gel electrophoresis showed a reduction of arabinoxylan content in salt-stressed roots. Saponification and mild acid hydrolysis revealed that salinity also reduced the feruloylation of arabinoxylans in roots of seedlings and plants. Determination of lignin content and composition by nitrobenzene oxidation and 2D-NMR confirmed the increased incorporation of syringyl units in lignin of maize roots. Salt stress also induced the expression of genes and the activity of enzymes enrolled in phenylpropanoid biosynthesis. The UHPLC-MS-based metabolite profiling confirmed the modulation of phenolic profiling by salinity and the accumulation of ferulate and its derivatives 3- and 4-O-feruloyl quinate. In conclusion, we present a model for explaining cell wall remodeling in response to salinity.


Assuntos
Parede Celular/química , Fenóis/metabolismo , Polissacarídeos/metabolismo , Zea mays/citologia , Zea mays/metabolismo , Parede Celular/metabolismo , Celulose/análise , Celulose/química , Ácidos Cumáricos/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Monossacarídeos/análise , Células Vegetais/metabolismo , Raízes de Plantas/metabolismo , Polissacarídeos/química , Estresse Salino/fisiologia , Plântula/citologia , Plântula/metabolismo , Xilanos/análise , Xilanos/química , Xilanos/metabolismo , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA