Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0119213, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811618

RESUMO

BACKGROUND: Prenatal exposures may have a distinct impact for long-term health, one example being exposure to maternal 'diabesity' during pregnancy increasing offspring 'diabesity' risk. Malprogramming of the central nervous regulation of body weight, food intake and metabolism has been identified as a critical mechanism. While concrete disrupting factors still remain unclear, growing focus on acquired epigenomic alterations have been proposed. Due to the independent development from the mother, the chicken embryo provides a valuable model to distinctively establish causal factors and mechanisms. AIM: The aim of this study was to determine the effects of prenatal hyperglycemia on postnatal hypothalamic gene expression and promoter DNA methylation in the chicken. METHODS AND FINDINGS: To temporarily induce high-glucose exposure in chicken embryos, 0.5 ml glucose solution (30 mmol/l) were administered daily via catheter into a vessel of the chorioallantoic egg membrane from days 14 to 17 of incubation. At three weeks of postnatal age, body weight, total body fat, blood glucose, mRNA expression (INSR, LEPR, GLUT1, GLUT3) as well as corresponding promoter DNA methylation were determined in mediobasal hypothalamic brain slices (Nucleus infundibuli hypothalami). Although no significant changes in morphometric and metabolic parameters were detected, strongly decreased mRNA expression occurred in all candidate genes. Surprisingly, however, no relevant alterations were observed in respective promoter methylation. CONCLUSION: Prenatal hyperglycemia induces strong changes in later hypothalamic expression of INSR, LEPR, GLUT1, and GLUT3 mRNA. While the chicken provides an interesting approach for developmental malprogramming, the classical expression regulation via promoter methylation was not observed here. This may be due to alternative/interacting brain mechanisms or the thus far under-explored bird epigenome.


Assuntos
Metilação de DNA , Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/genética , Glucose/metabolismo , Hipotálamo/metabolismo , Regiões Promotoras Genéticas , Receptor de Insulina/genética , Receptores para Leptina/genética , Animais , Glicemia , Peso Corporal , Embrião de Galinha , Galinhas , Feminino , Perfilação da Expressão Gênica , Masculino , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA