Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 613(7942): 120-129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517604

RESUMO

Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health1, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFß1-TGFßR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease2,3.


Assuntos
Sistema Nervoso Central , Microglia , Bainha de Mielina , Adulto , Animais , Humanos , Camundongos , Axônios/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Microglia/citologia , Microglia/metabolismo , Microglia/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Cognição , Fator de Crescimento Transformador beta1/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Metabolismo dos Lipídeos , Envelhecimento/metabolismo , Envelhecimento/patologia
2.
Proc Natl Acad Sci U S A ; 120(37): e2301030120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669365

RESUMO

A hallmark of multiple sclerosis (MS) is the formation of multiple focal demyelinating lesions within the central nervous system (CNS). These lesions mainly consist of phagocytes that play a key role in lesion progression and remyelination, and therefore represent a promising therapeutic target in MS. We recently showed that unsaturated fatty acids produced by stearoyl-CoA desaturase-1 induce inflammatory foam cell formation during demyelination. These fatty acids are elongated by the "elongation of very long chain fatty acids" proteins (ELOVLs), generating a series of functionally distinct lipids. Here, we show that the expression and activity of ELOVLs are altered in myelin-induced foam cells. Especially ELOVL6, an enzyme responsible for converting saturated and monounsaturated C16 fatty acids into C18 species, was found to be up-regulated in myelin phagocytosing phagocytes in vitro and in MS lesions. Depletion of Elovl6 induced a repair-promoting phagocyte phenotype through activation of the S1P/PPARγ pathway. Elovl6-deficient foamy macrophages showed enhanced ABCA1-mediated lipid efflux, increased production of neurotrophic factors, and reduced expression of inflammatory mediators. Moreover, our data show that ELOVL6 hampers CNS repair, as Elovl6 deficiency prevented demyelination and boosted remyelination in organotypic brain slice cultures and the mouse cuprizone model. These findings indicate that targeting ELOVL6 activity may be an effective strategy to stimulate CNS repair in MS and other neurodegenerative diseases.


Assuntos
Esclerose Múltipla , Remielinização , Animais , Camundongos , Adipogenia , Modelos Animais de Doenças , Ácidos Graxos , Ácidos Graxos Monoinsaturados , Células Espumosas
4.
Proc Natl Acad Sci U S A ; 119(46): e2120393119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343243

RESUMO

Failure of remyelination underlies the progressive nature of demyelinating diseases such as multiple sclerosis. Why endogenous repair mechanisms frequently fail in these disorders is poorly understood. However, there is now evidence indicating that this is related to an overly inflammatory microenvironment combined with the intrinsic inability of oligodendrocyte precursor cells (OPCs) to differentiate into mature myelinating cells. Previously, we found that phloretin, a flavonoid abundantly present in apples and strawberries, reduces neuroinflammation by driving macrophages toward an antiinflammatory phenotype. Here, we show that phloretin also markedly stimulates remyelination in ex vivo and in vivo animal models. Improved remyelination was attributed to a direct impact of phloretin on OPC maturation and occurred independently from alterations in microglia function and inflammation. We found, mechanistically, that phloretin acts as a direct ligand for the fatty acid sensing nuclear receptor peroxisome proliferator-activated receptor gamma, thereby promoting the maturation of OPCs. Together, our findings indicate that phloretin has proregenerative properties in central nervous system disorders, with potentially broad implications for the development of therapeutic strategies and dietary interventions aimed at promoting remyelination.


Assuntos
Células Precursoras de Oligodendrócitos , Remielinização , Animais , Camundongos , Remielinização/fisiologia , Floretina/farmacologia , Camundongos Endogâmicos C57BL , Oligodendroglia , Diferenciação Celular/fisiologia , Bainha de Mielina
5.
J Allergy Clin Immunol ; 153(1): 1-11, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871669

RESUMO

Autoinflammatory diseases (AIDs) are a group of rare monogenetic disorders characterized by recurrent episodes of fever and systemic inflammation. A major pathologic hallmark of AIDs is excessive inflammasome assembly and activation, often the result of gain-of-function mutations in genes encoding core inflammasome components, including pyrin and cryopyrin. Recent advances in lipidomics have revealed that dysregulated metabolism of lipids such as cholesterol and fatty acids, especially in innate immune cells, exerts complex effects on inflammasome activation and the pathogenesis of AIDs. In this review, we summarize and discuss the impact of lipids and their metabolism on inflammasome activation and the disease pathogenesis of the most common AIDs, including familial Mediterranean fever, cryopyrin-associated periodic syndromes, and mevalonate kinase deficiency. We postulate that lipids hold diagnostic value in AIDs and that dietary and pharmacologic intervention studies could represent a promising approach to attenuate inflammasome activation and AID progression.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Febre Familiar do Mediterrâneo , Humanos , Inflamassomos , Febre Familiar do Mediterrâneo/genética , Síndromes Periódicas Associadas à Criopirina/genética , Inflamação , Lipídeos
6.
J Lipid Res ; 64(2): 100325, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592658

RESUMO

Lysoplasmalogens are a class of vinyl ether bioactive lipids that have a central role in plasmalogen metabolism and membrane fluidity. The liver X receptor (LXR) transcription factors are important determinants of cellular lipid homeostasis owing to their ability to regulate cholesterol and fatty acid metabolism. However, their role in governing the composition of lipid species such as lysoplasmalogens in cellular membranes is less well studied. Here, we mapped the lipidome of bone marrow-derived macrophages (BMDMs) following LXR activation. We found a marked reduction in the levels of lysoplasmalogen species in the absence of changes in the levels of plasmalogens themselves. Transcriptional profiling of LXR-activated macrophages identified the gene encoding transmembrane protein 86a (TMEM86a), an integral endoplasmic reticulum protein, as a previously uncharacterized sterol-regulated gene. We demonstrate that TMEM86a is a direct transcriptional target of LXR in macrophages and microglia and that it is highly expressed in TREM2+/lipid-associated macrophages in human atherosclerotic plaques, where its expression positively correlates with other LXR-regulated genes. We further show that both murine and human TMEM86a display active lysoplasmalogenase activity that can be abrogated by inactivating mutations in the predicted catalytic site. Consequently, we demonstrate that overexpression of Tmem86a in BMDM markedly reduces lysoplasmalogen abundance and membrane fluidity, while reciprocally, silencing of Tmem86a increases basal lysoplasmalogen levels and abrogates the LXR-dependent reduction of this lipid species. Collectively, our findings implicate TMEM86a as a sterol-regulated lysoplasmalogenase in macrophages that contributes to sterol-dependent membrane remodeling.


Assuntos
Macrófagos , Esteróis , Animais , Humanos , Camundongos , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptores Imunológicos , Esteróis/metabolismo , Fatores de Transcrição/metabolismo
7.
J Clin Immunol ; 44(1): 8, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129719

RESUMO

Pyrin is a cytosolic protein encoded by the MEFV gene, predominantly expressed in innate immune cells. Upon activation, it forms an inflammasome, a multimolecular complex that enables the activation and secretion of IL-1ß and IL-18. In addition, the Pyrin inflammasome activates Gasdermin D leading to pyroptosis, a highly pro-inflammatory cell death. Four autoinflammatory syndromes are associated with Pyrin inflammasome dysregulation: familial Mediterranean fever, hyper IgD syndrome/mevalonate kinase deficiency, pyrin-associated autoinflammation with neutrophilic dermatosis, and pyogenic arthritis, pyoderma gangrenosum, and acne syndrome. In this review, we discuss recent advances in understanding the molecular mechanisms regulating the two-step model of Pyrin inflammasome activation. Based on these insights, we discuss current pharmacological options and identify a series of existing molecules with therapeutic potential for the treatment of pyrin-associated autoinflammatory syndromes.


Assuntos
Febre Familiar do Mediterrâneo , Deficiência de Mevalonato Quinase , Pioderma Gangrenoso , Humanos , Inflamassomos/metabolismo , Pirina/genética , Febre Familiar do Mediterrâneo/genética , Síndrome , Deficiência de Mevalonato Quinase/terapia , Deficiência de Mevalonato Quinase/genética
8.
Cell Mol Life Sci ; 79(10): 515, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100764

RESUMO

Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood. Here, we provide evidence that LD-associated protein perilipin-2 (PLIN2) controls LD metabolism in myelin-containing phagocytes. We show that PLIN2 protects LDs from lipolysis-mediated degradation, thereby impairing intracellular processing of myelin-derived lipids in phagocytes. Accordingly, loss of Plin2 stimulates LD turnover in foamy phagocytes, driving them towards a less inflammatory phenotype. Importantly, Plin2-deficiency markedly improves remyelination in the ex vivo brain slice model and in the in vivo cuprizone-induced demyelination model. In summary, we identify PLIN2 as a novel therapeutic target to prevent the pathogenic accumulation of LDs in foamy phagocytes and to stimulate remyelination.


Assuntos
Gotículas Lipídicas , Remielinização , Gotículas Lipídicas/metabolismo , Lipídeos , Bainha de Mielina/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
9.
J Neuroinflammation ; 18(1): 148, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34218792

RESUMO

BACKGROUND: Macrophages play a dual role in neuroinflammatory disorders such as multiple sclerosis (MS). They are involved in lesion onset and progression but can also promote the resolution of inflammation and repair of damaged tissue. In this study, we investigate if and how phloretin, a flavonoid abundantly present in apples and strawberries, lowers the inflammatory phenotype of macrophages and suppresses neuroinflammation. METHODS: Transcriptional changes in mouse bone marrow-derived macrophages upon phloretin exposure were assessed by bulk RNA sequencing. Underlying pathways related to inflammation, oxidative stress response and autophagy were validated by quantitative PCR, fluorescent and absorbance assays, nuclear factor erythroid 2-related factor 2 (Nrf2) knockout mice, western blot, and immunofluorescence. The experimental autoimmune encephalomyelitis (EAE) model was used to study the impact of phloretin on neuroinflammation in vivo and confirm underlying mechanisms. RESULTS: We show that phloretin reduces the inflammatory phenotype of macrophages and markedly suppresses neuroinflammation in EAE. Phloretin mediates its effect by activating the Nrf2 signaling pathway. Nrf2 activation was attributed to 5' AMP-activated protein kinase (AMPK)-dependent activation of autophagy and subsequent kelch-like ECH-associated protein 1 (Keap1) degradation. CONCLUSIONS: This study opens future perspectives for phloretin as a therapeutic strategy for neuroinflammatory disorders such as MS. TRIAL REGISTRATION: Not applicable.


Assuntos
Autofagia/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Macrófagos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Floretina/farmacologia , Animais , Autofagia/fisiologia , Células Cultivadas , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , Floretina/uso terapêutico
10.
J Neuroinflammation ; 18(1): 255, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740381

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. METHODS: The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). RESULTS: Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (ß-alanyl-L-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. CONCLUSIONS: Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS.


Assuntos
Acroleína/metabolismo , Doenças Autoimunes do Sistema Nervoso/metabolismo , Doenças Autoimunes do Sistema Nervoso/patologia , Carnosina/farmacologia , Doenças Neuroinflamatórias/metabolismo , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia
11.
J Autoimmun ; 124: 102723, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481107

RESUMO

The initiation and progression of autoimmune disorders such as multiple sclerosis (MS) is linked to aberrant cholesterol metabolism and overt inflammation. Liver X receptors (LXR) are nuclear receptors that function at the crossroads of cholesterol metabolism and immunity, and their activation is considered a promising therapeutic strategy to attenuate autoimmunity. However, despite clear functional heterogeneity and cell-specific expression profiles, the impact of the individual LXR isoforms on autoimmunity remains poorly understood. Here, we show that LXRα and LXRß have an opposite impact on immune cell function and disease severity in the experimental autoimmune encephalomyelitis model, an experimental MS model. While Lxrα deficiency aggravated disease pathology and severity, absence of Lxrß was protective. Guided by flow cytometry and by using cell-specific knockout models, reduced disease severity in Lxrß-deficient mice was primarily attributed to changes in peripheral T cell physiology and occurred independent from alterations in microglia function. Collectively, our findings indicate that LXR isoforms play functionally non-redundant roles in autoimmunity, potentially having broad implications for the development of LXR-based therapeutic strategies aimed at dampening autoimmunity and neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Receptores X do Fígado/metabolismo , Microglia/patologia , Esclerose Múltipla/imunologia , Linfócitos T/imunologia , Animais , Autoimunidade , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Receptores X do Fígado/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inflamação Neurogênica
12.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360931

RESUMO

Fatty acids (FAs) are of crucial importance for brain homeostasis and neural function. Glia cells support the high demand of FAs that the central nervous system (CNS) needs for its proper functioning. Additionally, FAs can modulate inflammation and direct CNS repair, thereby contributing to brain pathologies such Alzheimer's disease or multiple sclerosis. Intervention strategies targeting FA synthesis in glia represents a potential therapeutic opportunity for several CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Sistema Nervoso Central , Ácidos Graxos/metabolismo , Neuroglia , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Neuroglia/metabolismo , Neuroglia/patologia
13.
J Neuroinflammation ; 17(1): 224, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32718316

RESUMO

BACKGROUND: The presence of foamy macrophages and microglia containing intracellular myelin remnants is a pathological hallmark of neurodegenerative disorders such as multiple sclerosis (MS). Despite the importance of myelin internalization in affecting both central nervous system repair and neuroinflammation, the receptors involved in myelin clearance and their impact on the phagocyte phenotype and lesion progression remain to be clarified. METHODS: Flow cytometry, quantitative PCR, and immunohistochemistry were used to define the mRNA and protein abundance of CD36 in myelin-containing phagocytes. The impact of CD36 and nuclear factor erythroid 2-related factor 2 (NRF2) on the phagocytic and inflammatory features of macrophages and microglia was assessed using a pharmacological CD36 inhibitor (sulfo-N-succinimidyl oleate) and Nrf2-/- bone marrow-derived macrophages. Finally, the experimental autoimmune encephalomyelitis (EAE) model was used to establish the impact of CD36 inhibition on neuroinflammation and myelin phagocytosis in vivo. RESULTS: Here, we show that the fatty acid translocase CD36 is required for the uptake of myelin debris by macrophages and microglia, and that myelin internalization increased CD36 expression through NRF2. Pharmacological inhibition of CD36 promoted the inflammatory properties of myelin-containing macrophages and microglia in vitro, which was paralleled by a reduced activity of the anti-inflammatory lipid-sensing liver X receptors and peroxisome proliferator-activated receptors. By using the EAE model, we provide evidence that CD36 is essential for myelin debris clearance in vivo. Importantly, CD36 inhibition markedly increased the neuroinflammatory burden and disease severity in the EAE model. CONCLUSION: Altogether, we show for the first time that CD36 is crucial for clearing myelin debris and suppressing neuroinflammation in demyelinating disorders such as MS.


Assuntos
Antígenos CD36/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Bainha de Mielina/metabolismo , Fagocitose/fisiologia , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL
14.
Anal Bioanal Chem ; 412(10): 2277-2289, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31879798

RESUMO

Matrix-assisted laser desorption/ionisation-mass spectrometry imaging (MALDI-MSI) is a powerful technique for visualising the spatial locations of lipids in biological tissues. However, a major challenge in interpreting the biological significance of local lipid compositions and distributions detected using MALDI-MSI is the difficulty in associating spectra with cellular lipid metabolism within the tissue. By-and-large this is due to the typically limited spatial resolution of MALDI-MSI (30-100 µm) meaning individual spectra represent the average spectrum acquired from multiple adjacent cells, each potentially possessing a unique lipid composition and biological function. The use of oversampling is one promising approach to decrease the sampling area and improve the spatial resolution in MALDI-MSI, but it can suffer from a dramatically decreased sensitivity. In this work we overcome these challenges through the coupling of oversampling MALDI-MSI with laser post-ionisation (MALDI-2). We demonstrate the ability to acquire rich lipid spectra from pixels as small as 6 µm, equivalent to or smaller than the size of typical mammalian cells. Coupled with an approach for automated lipid identification, it is shown that MALDI-2 combined with oversampling at 6 µm pixel size can detect up to three times more lipids and many more lipid classes than even conventional MALDI at 20 µm resolution in the positive-ion mode. Applying this to mouse kidney and human brain tissue containing active multiple sclerosis lesions, where 74 and 147 unique lipids are identified, respectively, the localisation of lipid signals to individual tubuli within the kidney and lipid droplets with lesion-specific macrophages is demonstrated. Graphical abstract.


Assuntos
Lipídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/metabolismo , Química Encefálica , Humanos , Rim/química , Rim/metabolismo , Metabolismo dos Lipídeos , Camundongos
15.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297574

RESUMO

Macrophages play a crucial role during the pathogenesis of multiple sclerosis (MS), a neuroinflammatory autoimmune disorder of the central nervous system. Important regulators of the metabolic and inflammatory phenotype of macrophages are liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs). Previously, it has been reported that PPARγ expression is decreased in peripheral blood mononuclear cells of MS patients. The goal of the present study was to determine to what extent PPARγ, as well as the closely related nuclear receptors PPARα and ß and LXRα and ß, are differentially expressed in monocytes from MS patients and how this change in expression affects the function of monocyte-derived macrophages. We demonstrate that monocytes of relapsing-remitting MS patients display a marked decrease in PPARγ expression, while the expression of PPARα and LXRα/ß is not altered. Interestingly, exposure of monocyte-derived macrophages from healthy donors to MS-associated proinflammatory cytokines mimicked this reduction in PPARγ expression. While a reduced PPARγ expression did not affect the inflammatory and phagocytic properties of myelin-loaded macrophages, it did impact myelin processing by increasing the intracellular cholesterol load of myelin-phagocytosing macrophages. Collectively, our findings indicate that an inflammation-induced reduction in PPARγ expression promotes myelin-induced foam cell formation in macrophages in MS.


Assuntos
Células Espumosas/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , PPAR gama/metabolismo , Células Cultivadas , Humanos , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/patologia , Bainha de Mielina/metabolismo , PPAR gama/genética
16.
Brain Behav Immun ; 80: 129-145, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30851378

RESUMO

A disintegrin and metalloproteinase 17 (ADAM17) is the major sheddase involved in the cleavage of a plethora of cytokines, cytokine receptors and growth factors, thereby playing a substantial role in inflammatory and regenerative processes after central nervous system trauma. By making use of a hypomorphic ADAM17 knockin mouse model as well as pharmacological ADAM10/ADAM17 inhibitors, we showed that ADAM17-deficiency or inhibition significantly increases clearance of apoptotic cells, promotes axon growth and improves functional recovery after spinal cord injury (SCI) in mice. Microglia-specific ADAM17-knockout (ADAM17flox+/+-Cx3Cr1 Cre+/-) mice also showed improved functional recovery similar to hypomorphic ADAM17 mice. In contrast, endothelial-specific (ADAM17flox+/+-Cdh5Pacs Cre+/-) and macrophage-specific (ADAM17flox+/+-LysM Cre+/-) ADAM17-knockout mice or bone marrow chimera with transplanted ADAM17-deficient macrophages, displayed no functional improvement compared to wild type mice. These data indicate that ADAM17 expression on microglia cells (and not on macrophages or endothelial cells) plays a detrimental role in inflammation and functional recovery after SCI.


Assuntos
Proteína ADAM17/metabolismo , Microglia/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/imunologia , Fagocitose/fisiologia , Recuperação de Função Fisiológica/fisiologia
17.
Mult Scler ; 24(3): 279-289, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28273782

RESUMO

OBJECTIVE: We sought to determine the liver X receptor (LXR) ligands present in human macrophages after myelin phagocytosis and whether LXRs are activated in multiple sclerosis (MS) lesions. METHODS: We used real-time quantitative polymerase chain reaction (PCR) and immunohistochemistry to determine expression of LXRs and their response genes in human phagocytes after myelin phagocytosis and in active MS lesions. We used gas chromatographic/mass spectrometric analysis to determine LXR-activating oxysterols and cholesterol precursors present and formed in myelin and myelin-incubated cells, respectively. RESULTS: Myelin induced LXR response genes ABCA1 and ABCG1 in human monocyte-derived macrophages. In active MS lesions, we found that both gene expression and protein levels of ABCA1 and apolipoprotein E ( APOE) are upregulated in foamy phagocytes. Moreover, we found that the LXR ligand 27-hydroxycholesterol (27OHC) is significantly increased in human monocyte-derived macrophages after myelin uptake. CONCLUSION: LXR response genes are upregulated in phagocytes present in active MS lesions, indicating that LXRs are activated in actively demyelinating phagocytes. In addition, we have shown that myelin contains LXR ligands and that 27OHC is generated in human monocyte-derived macrophages after myelin processing. This suggests that LXRs in phagocytes in active MS lesions are activated at least partially by (oxy)sterols present in myelin and the generation thereof during myelin processing.


Assuntos
Encéfalo , Receptores X do Fígado/metabolismo , Macrófagos , Bainha de Mielina/metabolismo , Transdução de Sinais , Bancos de Tecidos , Encéfalo/imunologia , Encéfalo/metabolismo , Células Cultivadas , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Esclerose Múltipla
18.
Mult Scler ; 24(3): 290-300, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28277099

RESUMO

BACKGROUND: Phagocytes, such as macrophages and microglia, are key effector cells in the pathophysiology of multiple sclerosis (MS). It is widely accepted that they instigate and promote neuroinflammatory and neurodegenerative events in MS. An increasing amount of studies indicate that Siglec-1, also known CD169, is a marker for activated phagocytes in inflammatory disorders. OBJECTIVE: In this study, we set out to define how CD169+ phagocytes contribute to neuroinflammation in MS. METHODS: CD169-diphtheria toxin receptor (DTR) mice, which express human DTR under control of the CD169 promoter, were used to define the impact of CD169+ cells on neuroinflammation. Flow cytometry and immunohistochemistry were utilized to determine the expression and distribution of CD169. RESULTS: We show that CD169 is highly expressed by lesional and circulating phagocytes in MS and experimental autoimmune encephalomyelitis (EAE). Our data further indicate that CD169 represents a selective marker for early activated microglia in MS and EAE lesions. Depletion of CD169+ cells markedly reduced neuroinflammation and ameliorated disease symptoms in EAE-affected mice. CONCLUSION: Our findings indicate that CD169+ cells promote neuroinflammation. Furthermore, they suggest that CD169+ phagocytes play a key role in the pathophysiology of MS. Hence, targeting CD169+ phagocytes may hold therapeutic value for MS.


Assuntos
Biomarcadores , Encefalomielite Autoimune Experimental/diagnóstico , Inflamação/diagnóstico , Esclerose Múltipla/diagnóstico , Fagócitos , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
19.
Int J Mol Sci ; 19(1)2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316715

RESUMO

Multiple sclerosis (MS) is an inflammatory auto-immune disease of the central nervous system (CNS). Serum glucose alterations and impaired glucose tolerance (IGT) are reported in MS patients, and are commonly associated with the development of cardio-metabolic co-morbidities. We previously found that a subgroup of MS patients shows alterations in their lipoprotein profile that are similar to a pre-cardiovascular risk profile. In addition, we showed that a high-intensity exercise training has a positive effect on IGT in MS patients. In this study, we hypothesize that exercise training positively influences the lipoprotein profile of MS patients. To this end, we performed a pilot study and determined the lipoprotein profile before (controls, n = 40; MS patients, n = 41) and after (n = 41 MS only) 12 weeks of medium-intensity continuous training (MIT, n = 21, ~60% of VO2max) or high-intensity interval training (HIT, n = 20, ~100-200% of VO2max) using nuclear magnetic resonance spectroscopy (NMR). Twelve weeks of MIT reduced intermediate-density lipoprotein particle count ((nmol/L); -43.4%; p < 0.01), low-density lipoprotein cholesterol (LDL-c (mg/dL); -7.6%; p < 0.05) and VLDL size ((nm); -6.6%; p < 0.05), whereas HIT did not influence the lipoprotein profile. These results show that MIT partially normalizes lipoprotein alterations in MS patients. Future studies including larger patient and control groups should determine whether MIT can reverse other lipoprotein levels and function and if these alterations are related to MS disease progression and the development of co-morbidities.


Assuntos
Doenças Cardiovasculares/prevenção & controle , LDL-Colesterol/sangue , Terapia por Exercício/métodos , Treinamento Intervalado de Alta Intensidade/métodos , Esclerose Múltipla/sangue , Glicemia/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia
20.
Acta Neuropathol ; 128(2): 191-213, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24952885

RESUMO

Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In the context of this dichotomy, we summarize and discuss the current knowledge on the spatiotemporal physiology of macrophage subsets and microglia in the healthy and diseased CNS, and elaborate on factors regulating their behavior. In addition, the impact of macrophages present in lymphoid organs on CNS pathologies is defined. The prime focus of this review is on multiple sclerosis (MS), which is characterized by inflammation, demyelination, neurodegeneration, and CNS repair, and in which microglia and macrophages have been extensively scrutinized. On one hand, microglia and macrophages promote neuroinflammatory and neurodegenerative events in MS by releasing inflammatory mediators and stimulating leukocyte activity and infiltration into the CNS. On the other hand, microglia and macrophages assist in CNS repair through the production of neurotrophic factors and clearance of inhibitory myelin debris. Finally, we define how microglia and macrophage physiology can be harnessed for new therapeutics aimed at suppressing neuroinflammatory and cytodegenerative events, as well as promoting CNS repair. We conclude that microglia and macrophages are highly dynamic cells displaying disease stage and location-specific fates in neurological disorders. Changing the physiology of divergent phagocyte subsets at particular disease stages holds promise for future therapeutics for CNS pathologies.


Assuntos
Macrófagos/fisiologia , Microglia/fisiologia , Esclerose Múltipla/imunologia , Animais , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Microglia/efeitos dos fármacos , Microglia/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA