Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Mol Mutagen ; 64(2): 88-104, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629742

RESUMO

The in vivo comet assay is widely used to measure genotoxicity; however, the current OECD test guideline (TG 489) does not recommend using the assay to assess testicular germ cells, due to the presence of testicular somatic cells. An adapted approach to specifically assess testicular germ cells within the comet assay is certainly warranted, considering regulatory needs for germ cell-specific genotoxicity data in relation to the increasing global production of and exposure to potentially hazardous chemicals. Here, we provide a proof-of-concept to selectively analyze round spermatids and primary spermatocytes, distinguishing them from other cells of the testicle. Utilizing the comet assay recordings of DNA content (total fluorescence intensity) and DNA damage (% tail intensity) of individual comets, we developed a framework to distinguish testicular cell populations based on differences in DNA content/ploidy and appearance. Haploid round spermatid comets are identified through (1) visual inspection of DNA content distributions, (2) setting DNA content thresholds, and (3) modeling DNA content distributions using a normal mixture distribution function. We also describe an approach to distinguish primary spermatocytes during comet scoring, based on their high DNA content and large physical size. Our concept allows both somatic and germ cells to be analyzed in the same animal, adding a versatile, sensitive, rapid, and resource-efficient assay to the limited genotoxicity assessment toolbox for germ cells. An adaptation of TG 489 facilitates accumulation of valuable information regarding distribution of substances to germ cells and their potential for inducing germ cell gene mutations and structural chromosomal aberrations.


Assuntos
Espermatozoides , Testículo , Masculino , Animais , Ensaio Cometa , Dano ao DNA , Células Germinativas , DNA
2.
Part Fibre Toxicol ; 9: 19, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22656316

RESUMO

BACKGROUND: Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR) loci in mice are sensitive markers of mutagenic effects on male germ cells resulting from environmental exposures; however, female germ cells have received little attention. Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development). Accordingly, an increase in germline ESTR mutations in female mice prenatally exposed to radiation has previously been reported. Here we investigate the effects of nanoparticles on the female germline. Since pulmonary exposure to nanosized titanium dioxide (nanoTiO(2)) produces a long-lasting inflammatory response in mice, it was chosen for the present study. FINDINGS: Pregnant C57BL/6 mice were exposed by whole-body inhalation to the nanoTiO(2) UV-Titan L181 (~42.4 mg UV-Titan/m(3)) or filtered clean air on gestation days (GD) 8-18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates in this generation were estimated from full pedigrees (mother, father, offspring) of F1 female mice (192 UV-Titan-exposed F2 offspring and 164 F2 controls). ESTR mutation rates of 0.029 (maternal allele) and 0.047 (paternal allele) in UV-Titan-exposed F2 offspring were not statistically different from those of F2 controls: 0.037 (maternal allele) and 0.061 (paternal allele). CONCLUSIONS: We found no evidence for increased ESTR mutation rates in F1 females exposed in utero to UV-Titan nanoparticles from GD8-18 relative to control females.


Assuntos
Expansão das Repetições de DNA/efeitos dos fármacos , Mutação em Linhagem Germinativa/efeitos dos fármacos , Exposição Materna/efeitos adversos , Nanopartículas Metálicas/toxicidade , Mutagênicos/toxicidade , Titânio/toxicidade , Animais , Feminino , Exposição por Inalação/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Oogênese/efeitos dos fármacos , Gravidez , Sequências Repetitivas de Ácido Nucleico/efeitos dos fármacos
3.
Reprod Toxicol ; 41: 45-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23871697

RESUMO

Inhalation of particles has been shown to induce mutations in the male germline in mice following both prenatal and adult exposures in several experiments. In contrast, the effects of particles on female germ cell mutagenesis are not well established. Germline mutations are induced during active cell division, which occurs during fetal development in females. We investigated the effects of prenatal exposure to carbon black nanoparticles (CB) on induction of mutations in the female mouse germline during fetal development, spanning the critical developmental stages of oogenesis. Pregnant C57BL/6J mice were exposed four times during gestation by intratracheal instillation of 67µg/animal of nanosized carbon black Printex90 or vehicle (gestation days 7, 10, 15 and 18). Female offspring were raised to maturity and mated with unexposed CBA males. Expanded simple tandem repeat (ESTR) germline mutation rates in the resulting F2 generation were determined from full pedigrees (mother, father, offspring) of F1 female mice (178 CB-exposed and 258 control F2 offspring). ESTR mutation rates in CB-exposed F2 female offspring were not statistically different from those of F2 female control offspring.


Assuntos
Nanopartículas/toxicidade , Fuligem/toxicidade , Animais , Feminino , Células Germinativas/efeitos dos fármacos , Mutação em Linhagem Germinativa , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Sequências de Repetição em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA