Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Biol Rep ; 50(5): 4145-4154, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36877349

RESUMO

BACKGROUND: The green sea turtle, Chelonia mydas, is a migratory species with a strong natal homing behavior leading to a complex population structure worldwide. The species has suffered severe declines in local populations; it is therefore crucial to understand its population dynamics and genetic structure to adopt appropriate management policies. Here, we describe the development of 25 new microsatellite markers specific to C. mydas and suitable for these analyses. METHODS AND RESULTS: They were tested on 107 specimens from French Polynesia. An average allelic diversity of 8 alleles per locus was reported and observed heterozygosity ranged from 0.187 to 0.860. Ten loci were significantly deviant from the Hardy-Weinberg equilibrium, and 16 loci showed a moderate to high level of linkage disequilibrium (4-22%). The overall Fis was positive (0.034, p-value < 0.001), and sibship analysis revealed 12 half- or full-sibling dyads, suggesting possible inbreeding in this population. Cross-amplification tests were performed on two other marine turtle species, Caretta caretta and Eretmochelys imbricata. All loci successfully amplified on these two species, though 1 to 5 loci were monomorphic. CONCLUSION: These new markers will not only be relevant for further analyses on the population structure of the green turtle and the two other species, but they will also be invaluable for parentage studies, for which a high number of polymorphic loci are necessary. This can provide important insight into male reproductive behavior and migration, an aspect of sea turtle biology that is of critical importance for the conservation of the species.


Assuntos
Tartarugas , Animais , Masculino , Tartarugas/genética , Heterozigoto , Repetições de Microssatélites/genética , Polinésia
2.
Mol Biol Rep ; 50(4): 3205-3215, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36707491

RESUMO

BACKGROUND: Shark species are overfished at a global scale, as they are poached for the finning industry or are caught as bycatch. Efficient conservation measures require fine-scale spatial and temporal studies to characterize shark habitat use, infer migratory habits, analyze relatedness, and detect population genetic differentiation. Gathering these types of data is costly and time-consuming, especially when it requires collection of shark tissue samples. METHODS AND RESULTS: Genetic tools, such as microsatellite markers, are the most economical sampling method for collecting genetic data, as they enable the estimation of genetic diversity, population structure and parentage relationships and are thus an efficient way to inform conservation strategies. Here, a set of 45 microsatellite loci was tested on three blacktip reef shark (Carcharhinus melanopterus) populations from three Polynesian islands: Moorea, Morane and Tenararo. The set was composed of 10 previously published microsatellite markers and 35 microsatellite markers that were developed specifically for C. melanopterus as part of the present study. The 35 novel and 10 existing loci were cross-amplified on eight additional shark species (Carcharhinus amblyrhynchos, C. longimanus, C. sorrah, Galeocerdo cuvier, Negaprion acutidens, Prionacea glauca, Rhincodon typus and Sphyrna lewini). These species had an average of 69% of successful amplification, considered if at least 50% of the individual samples being successfully amplified per species and per locus. CONCLUSIONS: This novel microsatellite marker set will help address numerous knowledge gaps that remain, concerning genetic stock identification, shark behavior and reproduction via parentage analysis.


Assuntos
Tubarões , Animais , Tubarões/genética , Ecossistema , Polinésia , Repetições de Microssatélites/genética , Reprodução
3.
PLoS Biol ; 17(9): e3000483, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545807

RESUMO

Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects-in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the "-omics" complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016-2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east-west transect from Panama to Papua New Guinea and a south-north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene.


Assuntos
Antozoários/microbiologia , Recifes de Corais , Expedições , Microbiota , Animais , Metabolômica , Metagenômica , Oceano Pacífico , Simbiose
4.
Mol Biol Rep ; 48(1): 997-1004, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394229

RESUMO

Recently, Pinna nobilis pen shells population in Mediterranean Sea has plummeted due to a Mass Mortality Event caused by an haplosporidian parasite. In consequence, this bivalve species has been included in the IUCN Red List as "Critically Endangered". In the current scenario, several works are in progress to protect P. nobilis from extinction, being identification of hybrids (P. nobilis x P. rudis) among survivors extremely important for the conservation of the species.Morphological characteristics and molecular analyses were used to identify putative hybrids. A total of 10 individuals of each species (P. nobilis and P. rudis) and 3 doubtful individuals were considered in this study. The putative hybrids showed shell morphology and mantle coloration intermingled exhibiting both P. nobilis and P. rudis traits. Moreover, the analyses of 1150 bp of the 28S gene showed 9 diagnostic sites between P. rudis and P. nobilis, whereas hybrids showed both parental diagnostic alleles at the diagnostic loci. Regarding the multilocus genotypes from the 8 microsatellite markers, the segregation of two Pinna species was clearly detected on the PCoA plot and the 3 hybrids showed intermediate positions.This is the first study evidencing the existence of hybrids P. nobilis x P. rudis, providing molecular methodology for a proper identification of new hybrids. Further studies testing systematically all parasite-resisting isolated P. nobilis should be undertaken to determine if the resistance is resulting from introgression of P. rudis into P. nobilis genome and identifying aspects related to resistance.


Assuntos
Bivalves/genética , Quimera/genética , Resistência à Doença/genética , Loci Gênicos , Haplosporídios/patogenicidade , Alelos , Animais , Bivalves/classificação , Bivalves/imunologia , Bivalves/parasitologia , Quimera/imunologia , Cruzamentos Genéticos , Resistência à Doença/imunologia , Espécies em Perigo de Extinção , Genótipo , Haplosporídios/crescimento & desenvolvimento , Mar Mediterrâneo , Repetições de Microssatélites , Filogenia , Análise de Componente Principal
5.
Mol Ecol ; 29(8): 1508-1522, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32227655

RESUMO

Dispersal is a critical process for the persistence and productivity of marine populations. For many reef species, there is increasing evidence that local demography and self-recruitment have major consequences on their genetic diversity and adaptation to environmental change. Yet empirical data of dispersal patterns in reef-building species remain scarce. Here, we document the first genetic estimates of self-recruitment and dispersal distances in a free-spawning marine invertebrate, the hydrocoral Millepora cf. platyphylla. Using twelve microsatellite markers, we gathered genotypic information from 3,160 georeferenced colonies collected over 27,000 m2 of a single reef in three adjacent habitats in Moorea, French Polynesia; the mid slope, upper slope, and back reef. Although the adult population was predominantly clonal (85% were clones), our parentage analysis revealed a moderate self-recruitment rate with a minimum of 8% of sexual propagules produced locally. Assigned offspring often settled at <10 m from their parents and dispersal events decrease with increasing geographic distance. There were no discrepancies between the dispersal distances of offspring assigned to parents belonging to clonal versus nonclonal genotypes. Interhabitat dispersal events via cross-reef transport were also detected for sexual and asexual propagules. Sibship analysis showed that full siblings recruit nearby on the reef (more than 40% settled at <30 m), resulting in sibling aggregations. Our findings highlight the importance of self-recruitment together with clonality in stabilizing population dynamics, which may ultimately enhance local sustainability and resilience to disturbance.


Assuntos
Recifes de Corais , Irmãos , Animais , Genética Populacional , Humanos , Invertebrados , Repetições de Microssatélites , Polinésia
6.
Mol Biol Rep ; 47(9): 6983-6996, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32893317

RESUMO

Cetaceans are large mammals widely distributed on Earth. The fin whale, Balaenoptera physalus, is the second largest living animal. In the 20th century, commercial whaling reduced its global population by 70%, and in the Mediterranean Sea not only was their overall population depleted but the migration between the Mediterranean Sea and the Atlantic Ocean was reduced. Previous genetic studies identified isolation between these two regions, with a limited gene-flow between these adjacent populations based on nuclear and mitochondrial markers. However, only limited information exists for the Mediterranean population as genetic diversity and abundance trends are still unknown. In this study, 39 highly polymorphic microsatellite markers were tested, including 25 markers developed de novo together with 14 markers previously published. An average allelic diversity of 8.3 alleles per locus was reported, ranging from 3 to 15 alleles per locus, for B. physalus. Expected heterozygosity was variable among loci and ranged from 0.34 to 0.91. Only two markers in the new set were significantly deviant from the Hardy Weinberg equilibrium. Cross-species amplification was tested in four other cetacean species. A total of 27 markers were successfully amplified in the four species (Balaenoptera acutorostrata, Megaptera novaeangliae, Physeter macrocephalus and Globicephala melas). A multivariate analysis on the multilocus genotypes successfully discriminated the five species. This new set of microsatellite markers will not only provide a useful tool to identify and understand the genetic diversity and the evolution of the B. physalus population, but it will also be relevant for other cetacean species, and will allow further parentage analyses. Eventually, this new set of microsatellite markers will provide critical data that will shed light on important biological data within a conservation perspective.


Assuntos
Alelos , Evolução Molecular , Baleia Comum/genética , Genótipo , Repetições de Microssatélites , Animais , Especificidade da Espécie
7.
Mol Biol Rep ; 47(4): 2551-2559, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32095986

RESUMO

The fan mussel, Pinna nobilis is a highly endangered bivalve species endemic to the Mediterranean Sea. During the last few decades, populations have been greatly reduced due to anthropic impacts and they are now under strict protection in most Mediterranean countries. Today, the species is facing a major crisis following the introduction of an haplosporidan parasite which is driving mass mortality in almost all P. nobilis populations throughout the Mediterranean Sea. Gathering additional knowledge regarding dynamics and connectivity patterns of P. nobilis populations is now more than ever critical. Here, we describe the development of 26 highly polymorphic microsatellite markers. Average allelic diversity of 10.9 alleles per locus was reported and heterozygosity ranged from 0.0294 to 0.9737. We tested cross-species amplification in four Pinna species for the new markers together with 10 already published markers, and analysed its success according to the genetic distances among species. Cross-species transferability success ranged from 3 to 38% and had a negative relationship with the genetic distance between the target species and the tested species. The establishment of this new set of high-resolution markers provides a useful tool to understand processes driving gene flow and genetic diversity in P. nobilis populations and the closest congeneric species.


Assuntos
Bivalves/genética , Repetições de Microssatélites/genética , Alelos , Animais , Variação Genética/genética , Heterozigoto , Mar Mediterrâneo , Polimorfismo Genético/genética
8.
Mol Phylogenet Evol ; 130: 67-80, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308280

RESUMO

Brittlestars in the family Ophiocomidae are large and colourful inhabitants of tropical shallow water habitats across the globe. Here we use targeted capture and next-generation sequencing to generate robust phylogenomic trees for 39 of the 43 species in order to test the monophyly of existing genera. The large genus Ophiocoma, as currently constituted, is paraphyletic on our trees and required revision. Four genera are recognised herein: an expanded Ophiomastix (now including Ophiocoma wendtii, O. occidentalis, O. endeani, O. macroplaca, and Ophiarthrum spp), Ophiocomella (now including the non-fissiparous Ophiocoma pumila, aethiops and valenciae) and Breviturma (now including Ophiocoma pica, O. pusilla, O. paucigranulata and O. longispina) and a restricted Ophiocoma. The resulting junior homonym Ophiomastix elegans is renamed O. brocki. The genus Ophiomastix exhibits relatively high rates of morphological disparity compared to other lineages. Ophiomastix flaccida and O. (formerly Ophiarthrum) pictum have divergent mitochondrial genomes, characterised by gene-order rearrangements, strand recoding, enriched GT base composition, and a corresponding divergence of nuclear mitochondrial protein genes. The new phylogeny indicates that larval and developmental transitions occurred rarely. Larval culture trials show that species with abbreviated lecithotrophic larval development occur only within Ophiomastix, although the possible monophyly of these species is obscured by the rapid early radiation within this genus. Asexual reproduction by fission is limited to one species-complex within Ophiocomella, also characterised by elevated levels of allelic heterozygosity, and which has achieved a relatively rapid global distribution. The crown ages of the new genera considerably predate the closure of the Tethyan seaway and all four are distributed in both the Atlantic and Indo-Pacific Oceans. Two species pairs appear to reflect the closure of the Panama Seaway, although their fossil-calibrated node ages (12-14 ±â€¯6 my), derived from both concatenated sequence and multispecies coalescent analyses, considerably predate the terminal closure event. Ophiocoma erinaceus has crossed the East Pacific barrier and is recorded from Clipperton Island, SW of Mexico.


Assuntos
Equinodermos/anatomia & histologia , Equinodermos/classificação , Evolução Molecular , Filogenia , Animais , Oceano Atlântico , Equinodermos/genética , Meio Ambiente , Fósseis , Genes Mitocondriais/genética , Oceano Pacífico , Análise de Sequência de DNA , Especificidade da Espécie
9.
Mol Ecol ; 26(15): 3860-3869, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28475270

RESUMO

Clonal populations are often characterized by reduced levels of genotypic diversity, which can translate into lower numbers of functional phenotypes, both of which impede adaptation. Study of partially clonal animals enables examination of the environmental settings under which clonal reproduction is favoured. Here, we gathered genotypic and phenotypic information from 3,651 georeferenced colonies of the fire coral Millepora platyphylla in five habitats with different hydrodynamic regimes in Moorea, French Polynesia. In the upper slope where waves break, most colonies grew as vertical sheets ("sheet tree") making them more vulnerable to fragmentation. Nearly all fire corals in the other habitats are encrusting or massive. The M. platyphylla population is highly clonal (80% of the colonies are clones), while characterized by the highest genotype diversity ever documented for terrestrial or marine populations (1,064 genotypes). The proportion of clones varies greatly among habitats (≥58%-97%) and clones (328 clonal lineages) are distributed perpendicularly from the reef crest, perfectly aligned with wave energy. There are six clonal lineages with clones dispersed in at least two adjacent habitats that strongly demonstrate phenotypic plasticity. Eighty per cent of the colonies in these lineages are "sheet tree" on the upper slope, while 80%-100% are encrusting or massive on the mid slope and back reef. This is a unique example of phenotypic plasticity among reef-building coral clones as corals typically have wave-tolerant growth forms in high-energy reef areas.


Assuntos
Antozoários/genética , Recifes de Corais , Genética Populacional , Animais , Genótipo , Fenótipo , Polinésia
10.
Mol Ecol ; 26(23): 6563-6577, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29087018

RESUMO

Genetic diversity is crucial for species' maintenance and persistence, yet is often overlooked in conservation studies. Species diversity is more often reported due to practical constraints, but it is unknown if these measures of diversity are correlated. In marine invertebrates, adults are often sessile or sedentary and populations exchange genes via dispersal of gametes and larvae. Species with a larval period are expected to have more connected populations than those without larval dispersal. We assessed the relationship between measures of species and genetic diversity, and between dispersal ability and connectivity. We compiled data on genetic patterns and life history traits in nine species across five phyla. Sampling sites spanned 600 km in the northwest Mediterranean Sea and focused on a 50-km area near Marseilles, France. Comparative population genetic approaches yielded three main results. (i) Species without larvae showed higher levels of genetic structure than species with free-living larvae, but the role of larval type (lecithotrophic or planktotrophic) was negligible. (ii) A narrow area around Marseilles, subject to offshore advection, limited genetic connectivity in most species. (iii) We identified sites with significant positive contributions to overall genetic diversity across all species, corresponding with areas near low human population densities. In contrast, high levels of human activity corresponded with a negative contribution to overall genetic diversity. Genetic diversity within species was positively and significantly linearly related to local species diversity. Our study suggests that local contribution to overall genetic diversity should be taken into account for future conservation strategies.


Assuntos
Distribuição Animal , Biodiversidade , Variação Genética , Genética Populacional , Invertebrados/classificação , Animais , Organismos Aquáticos/classificação , Geografia , Larva , Mar Mediterrâneo
11.
PLoS One ; 19(6): e0305608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38885253

RESUMO

The blue shark, Prionace glauca, is the most abundant pelagic shark in the open ocean but its vulnerability remains poorly understood while being one of the most fecund sharks. In the Mediterranean Sea, the blue shark is listed as Critically Endangered (CR) by the International Union for Conservation of Nature. The species is facing a strong decline due to fishing, and scientific data regarding its genetic structure and vulnerability are still lacking. Here, we investigated the genetic diversity, demographic history, and population structure of the blue shark within the Mediterranean Sea, from samples of the Gulf of Lion and Malta, using sequences of the mtDNA control region and 22 microsatellite markers. We also compared our mitochondrial data to previous studies to examine the Atlantic-Mediterranean population structure. We assessed the blue shark's genetic vulnerability in the Mediterranean basin by modelling its effective population size. Our results showed a genetic differentiation between the Atlantic and the Mediterranean basins, with limited gene flow between the two areas, and distinct demographic histories making the Mediterranean population an independent management unit. Within the Mediterranean Sea, no sign of population structure was detected, suggesting a single population across the Western and Central parts of the sea. The estimated effective population size was low and highlighted the high vulnerability of the Mediterranean blue shark population, as the estimated size we calculated might not be sufficient to ensure the long-term persistence of the population. Our data also provide additional evidence that the Gulf of Lion area acts as a nursery for P. glauca, where protection is essential for the conservation strategy of the species in the Mediterranean.


Assuntos
DNA Mitocondrial , Espécies em Perigo de Extinção , Variação Genética , Densidade Demográfica , Tubarões , Animais , Tubarões/genética , Mar Mediterrâneo , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Genética Populacional , Conservação dos Recursos Naturais/métodos
12.
Sci Rep ; 13(1): 14913, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689802

RESUMO

The exploitation of sharks and the degradation of their habitats elevate the urgency to understand the factors that influence offspring survival and ultimately shark reproductive success. We monitored and sampled blacktip reef sharks (Carcharhinus melanopterus) in nursery habitats of Moorea Island (French Polynesia), to improve knowledge on shark reproductive behavior and biology. We sampled fin clips and morphometrics from 230 young-of-the-year sharks and used microsatellite DNA markers to process parentage analysis to study the reproductive philopatric behavior in female sharks and the matrotrophy within litters. These traits are driving the success of the local replenishment influencing selection through birth site and maternal reserves transmitted to pups. Parentage analysis revealed that some female sharks changed their parturition areas (inter-seasonally) while other female sharks came back to the same site for parturition, providing evidence for a plastic philopatric behavior. Morphometrics showed that there was no significant relationship between body condition indices and nursery locations. However, similarities and differences in body condition were observed between individuals sharing the same mother, indicating that resource allocation within some shark litters might be unbalanced. Our findings further our understanding of the reproductive biology and behavior that shape shark populations with the aim to introduce these parameters into future conservation strategies.


Assuntos
Reprodução , Tubarões , Feminino , Animais , Gravidez , Reprodução/genética , Tubarões/genética , Polinésia , Parto Obstétrico , Plásticos
13.
Sci Rep ; 13(1): 11589, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463961

RESUMO

With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean. Cores from colonies of the massive Porites and Diploastrea genera were collected from different environments to assess calcification parameters of long-lived reef-building corals. At the basin scale of the Pacific Ocean, we show that both genera systematically up-regulate their calcifying fluid pH and dissolved inorganic carbon to achieve efficient skeletal precipitation. However, while Porites corals increase the aragonite saturation state of the calcifying fluid (Ωcf) at higher temperatures to enhance their calcification capacity, Diploastrea show a steady homeostatic Ωcf across the Pacific temperature gradient. Thus, the extent to which Diploastrea responds to ocean warming and/or acidification is unclear, and it deserves further attention whether this is beneficial or detrimental to future survival of this coral genus.


Assuntos
Antozoários , Calcinose , Animais , Antozoários/fisiologia , Recifes de Corais , Regulação para Cima , Concentração de Íons de Hidrogênio , Carbonatos/metabolismo , Carbonato de Cálcio/metabolismo , Calcificação Fisiológica/fisiologia , Água do Mar
14.
Nat Commun ; 14(1): 3039, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264002

RESUMO

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Oceano Pacífico , Biodiversidade , Peixes , Plâncton
15.
Nat Commun ; 14(1): 3037, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264015

RESUMO

Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.


Assuntos
Antozoários , Gammaproteobacteria , Animais , Antozoários/microbiologia , Oceano Pacífico , Ecologia , Bactérias , Recifes de Corais
16.
Nat Commun ; 14(1): 3056, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264036

RESUMO

Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming. Here, we extracted DNA and RNA from 102 Pocillopora colonies collected from 32 sites on 11 islands across the Pacific Ocean to characterize host-photosymbiont fidelity and to investigate patterns of gene expression across a historical thermal gradient. We report high host-photosymbiont fidelity and show that coral and microalgal gene expression respond to different drivers. Differences in photosymbiotic association had only weak impacts on host gene expression, which was more strongly correlated with the historical thermal environment, whereas, photosymbiont gene expression was largely determined by microalgal lineage. Overall, our results reveal a three-tiered strategy of thermal acclimatization in Pocillopora underpinned by host-photosymbiont specificity, host transcriptomic plasticity, and differential photosymbiotic association under extreme warming.


Assuntos
Antozoários , Transcriptoma , Animais , Oceano Pacífico , Transcriptoma/genética , Antozoários/genética , Aclimatação/genética , Recifes de Corais
17.
Commun Biol ; 6(1): 566, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264063

RESUMO

Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.


Assuntos
Antozoários , Dinoflagellida , Vírus de RNA , Animais , Dinoflagellida/genética , Genoma , Antozoários/genética , Vírus de RNA/genética , Recifes de Corais
18.
Nat Commun ; 14(1): 3038, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263999

RESUMO

Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Temperatura , Estações do Ano , DNA/genética
19.
Sci Data ; 10(1): 324, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264023

RESUMO

The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean and the ocean surface waters at 249 locations, resulting in the collection of nearly 58 000 samples. The expedition was designed to systematically study warm-water coral reefs and included the collection of corals, fish, plankton, and seawater samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide a complete description of the sampling methodology, and we explain how to explore and access the different datasets generated by the expedition. Environmental context data were obtained from taxonomic registries, gazetteers, almanacs, climatologies, operational biogeochemical models, and satellite observations. The quality of the different environmental measures has been validated not only by various quality control steps, but also through a global analysis allowing the comparison with known environmental large-scale structures. Such publicly released datasets open the perspective to address a wide range of scientific questions.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Oceano Pacífico , Água do Mar
20.
Sci Data ; 10(1): 326, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264047

RESUMO

Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the coral host organism, endosymbiotic dinoflagellates, bacteria, archaea, fungi, and viruses. Tara Pacific is an ambitious project built upon the experience of previous Tara Oceans expeditions, and leveraging state-of-the-art sequencing technologies and analyses to dissect the biodiversity and biocomplexity of the coral holobiont screened across most archipelagos spread throughout the entire Pacific Ocean. Here we detail the Tara Pacific workflow for multi-omics data generation, from sample handling to nucleotide sequence data generation and deposition. This unique multidimensional framework also includes a large amount of concomitant metadata collected side-by-side that provide new assessments of coral reef biodiversity including micro-biodiversity and shape future investigations of coral reef dynamics and their fate in the Anthropocene.


Assuntos
Antozoários , Recifes de Corais , Animais , Biodiversidade , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA