Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(20): 4404-4421.e20, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774679

RESUMO

Persistent DNA double-strand breaks (DSBs) in neurons are an early pathological hallmark of neurodegenerative diseases including Alzheimer's disease (AD), with the potential to disrupt genome integrity. We used single-nucleus RNA-seq in human postmortem prefrontal cortex samples and found that excitatory neurons in AD were enriched for somatic mosaic gene fusions. Gene fusions were particularly enriched in excitatory neurons with DNA damage repair and senescence gene signatures. In addition, somatic genome structural variations and gene fusions were enriched in neurons burdened with DSBs in the CK-p25 mouse model of neurodegeneration. Neurons enriched for DSBs also had elevated levels of cohesin along with progressive multiscale disruption of the 3D genome organization aligned with transcriptional changes in synaptic, neuronal development, and histone genes. Overall, this study demonstrates the disruption of genome stability and the 3D genome organization by DSBs in neurons as pathological steps in the progression of neurodegenerative diseases.


Assuntos
Quebras de DNA de Cadeia Dupla , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , DNA , Reparo do DNA/genética , Doenças Neurodegenerativas/genética , Neurônios/fisiologia , Análise de Célula Única , Análise de Sequência de RNA , Instabilidade Genômica
2.
Cell ; 186(20): 4386-4403.e29, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774678

RESUMO

Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Regulação da Expressão Gênica , Inflamação/patologia , Microglia/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Epigenoma
3.
Cell ; 186(20): 4422-4437.e21, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774680

RESUMO

Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.


Assuntos
Doença de Alzheimer , Encéfalo , Regulação da Expressão Gênica , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Epigenoma , Epigenômica , Estudo de Associação Genômica Ampla
4.
Cell ; 186(20): 4365-4385.e27, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774677

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.


Assuntos
Doença de Alzheimer , Encéfalo , Idoso , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cognição , Disfunção Cognitiva/metabolismo , Neurônios/metabolismo
5.
Nature ; 590(7845): 300-307, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536621

RESUMO

Annotating the molecular basis of human disease remains an unsolved challenge, as 93% of disease loci are non-coding and gene-regulatory annotations are highly incomplete1-3. Here we present EpiMap, a compendium comprising 10,000 epigenomic maps across 800 samples, which we used to define chromatin states, high-resolution enhancers, enhancer modules, upstream regulators and downstream target genes. We used this resource to annotate 30,000 genetic loci that were associated with 540 traits4, predicting trait-relevant tissues, putative causal nucleotide variants in enriched tissue enhancers and candidate tissue-specific target genes for each. We partitioned multifactorial traits into tissue-specific contributing factors with distinct functional enrichments and disease comorbidity patterns, and revealed both single-factor monotropic and multifactor pleiotropic loci. Top-scoring loci frequently had multiple predicted driver variants, converging through multiple enhancers with a common target gene, multiple genes in common tissues, or multiple genes and multiple tissues, indicating extensive pleiotropy. Our results demonstrate the importance of dense, rich, high-resolution epigenomic annotations for the investigation of complex traits.


Assuntos
Doença/genética , Epigênese Genética/genética , Epigenômica , Redes Reguladoras de Genes/genética , Loci Gênicos/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Herança Multifatorial/genética , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes
6.
Cell Rep Med ; 5(5): 101556, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38776872

RESUMO

Cardiovascular disease plays a central role in the electrical and structural remodeling of the right atrium, predisposing to arrhythmias, heart failure, and sudden death. Here, we dissect with single-nuclei RNA sequencing (snRNA-seq) and spatial transcriptomics the gene expression changes in the human ex vivo right atrial tissue and pericardial fluid in ischemic heart disease, myocardial infarction, and ischemic and non-ischemic heart failure using asymptomatic patients with valvular disease who undergo preventive surgery as the control group. We reveal substantial differences in disease-associated gene expression in all cell types, collectively suggesting inflammatory microvascular dysfunction and changes in the right atrial tissue composition as the valvular and vascular diseases progress into heart failure. The data collectively suggest that investigation of human cardiovascular disease should expand to all functionally important parts of the heart, which may help us to identify mechanisms promoting more severe types of the disease.


Assuntos
Átrios do Coração , Microvasos , Isquemia Miocárdica , Transcriptoma , Humanos , Átrios do Coração/patologia , Átrios do Coração/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Isquemia Miocárdica/metabolismo , Transcriptoma/genética , Microvasos/patologia , Inflamação/patologia , Inflamação/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Regulação da Expressão Gênica
7.
Sci Adv ; 8(39): eabo4662, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170369

RESUMO

DNA double-strand breaks (DSBs) are linked to neurodegeneration and senescence. However, it is not clear how DSB-bearing neurons influence neuroinflammation associated with neurodegeneration. Here, we characterize DSB-bearing neurons from the CK-p25 mouse model of neurodegeneration using single-nucleus, bulk, and spatial transcriptomic techniques. DSB-bearing neurons enter a late-stage DNA damage response marked by nuclear factor κB (NFκB)-activated senescent and antiviral immune pathways. In humans, Alzheimer's disease pathology is closely associated with immune activation in excitatory neurons. Spatial transcriptomics reveal that regions of CK-p25 brain tissue dense with DSB-bearing neurons harbor signatures of inflammatory microglia, which is ameliorated by NFκB knockdown in neurons. Inhibition of NFκB in DSB-bearing neurons also reduces microglia activation in organotypic mouse brain slice culture. In conclusion, DSBs activate immune pathways in neurons, which in turn adopt a senescence-associated secretory phenotype to elicit microglia activation. These findings highlight a previously unidentified role for neurons in the mechanism of disease-associated neuroinflammation.


Assuntos
Quebras de DNA de Cadeia Dupla , Microglia , Animais , Antivirais/metabolismo , DNA/metabolismo , Humanos , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA