Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Environ Manage ; 281: 111882, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421937

RESUMO

Three of the primary functions of green roofs in urban areas are to delay rainwater runoff, moderate building temperatures, and ameliorate the urban heat island (UHI) effect. A major impediment to the survival of plants on an unirrigated extensive green roof (EGR) is the harsh rooftop environment, including high temperatures and limited water during dry periods. Factors that influence EGR thermal and hydrologic performance include the albedo (reflectivity) of the roof and the composition of the green roof substrate (growing media). In this study we used white, reflective shading structures and three different media formulations to evaluate EGR thermal and hydrologic performance in the Pacific Northwest, USA. Shading significantly reduced daytime mean and maximum EGR media temperatures and significantly increased nighttime mean and minimum temperatures, which may provide energy benefits to buildings. Mean media moisture was greater in shaded trays than in exposed (unshaded) trays but differences were not statistically significant. Warmer nighttime media temperatures and lack of dew formation in shaded trays may have partially compensated for greater daytime evaporation from exposed trays. Media composition did not significantly influence media temperature or moisture. Results of this study suggest that adding shade structures to green roofs will combine thermal, hydrologic, and ecological benefits, and help achieve temperature and light regimes that allow for greater plant diversity on EGRs.


Assuntos
Conservação dos Recursos Naturais , Temperatura Alta , Cidades , Noroeste dos Estados Unidos , Temperatura
2.
Ecol Eng ; 140: 1-105589, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32020990

RESUMO

One of the primary functions of green roofs in urban areas is to moderate rainwater runoff, and one of the major impediments to the survival of plants on an extensive green roof (EGR) is a lack of available water during dry periods. Runoff moderation and water storage are both influenced by the composition of the growing media. Here we present a framework for evaluating the hydrologic performance of EGR growing media and also provide hydrologic attribute data for several commonly used EGR media constituents. In this three-phase study, we: 1) measured hydrologic attributes of individual EGR media constituents, 2) predicted attributes of media mixtures using individual constituent data, and 3) tested the seven top-ranking mixtures to evaluate hydrologic performance. Hydrologic attributes included wet weight and water held at maximum retentive capacity, long-term water retention, and hydraulic conductivity. Because perlite was light in weight yet held the greatest amount of water both at its maximum retentive capacity and in the long term, media mixtures dominated by perlite were predicted to have the best overall hydrologic performance. Mixtures dominated by pumice were also predicted to perform relatively well but were heavier. Despite the slightly greater weight and slightly lower performance, pumice may be a preferred alternative to perlite because perlite is a processed constituent with greater estimated embodied energy. Results indicate that performance of mixtures can be adequately predicted using performance of individual constituents for wet weight, water held, and long-term water retention. Hydraulic conductivity was less predictable because the pore volume in mixtures can be unrelated to the pore volume of the individual constituents. The framework presented here can be used to evaluate the performance of other EGR media, and the media attribute data can be used in formulating EGR media mixtures for specific applications. In addition, the attribute data can serve as a benchmark for evaluating other EGR media. Our results underscore the need for standardization of methods for more effective comparisons of EGR substrates, and also reinforce the need to evaluate EGR components using real-world scenarios.

3.
Environ Sci Technol ; 52(17): 10067-10077, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30075627

RESUMO

It is important to understand molecular effects on plants exposed to compounds released from use of products containing engineered nanomaterials. Here, we present mRNA sequencing data on transcriptome impacts to Douglas-fir following 2 weeks of sublethal exposure to 30:1 diluted airborne emissions released from combustion of diesel fuel containing engineered CeO2 nanoparticle catalysts (DECe). Our hypothesis was that chamber exposure to DECe would induce distinct transcriptome changes in seedling needles compared with responses to conventional diesel exhaust (DE) or filtered DECe Gas Phase. Significantly increased uptake/binding of Ce in needles of DECe treated seedlings was 2.7X above background levels and was associated with altered gene expression patterns. All 225 Blast2GO gene ontologies (GOs) enriched by up-regulated DECe transcripts were nested within GOs for DE, however, 29 of 31 enriched GOs for down-regulated DECe transcripts were unique. MapMan analysis also identified three pathways enriched with DECe down-regulated transcripts. There was prominent representation of genes with attenuated expression in transferase, transporter, RNA regulation and protein degradation GOs and pathways. CeO2 nanoparticle additive decreased and shifted molecular impact of diesel emissions. Wide-spread use of such products and chronic environmental exposure to DECe may adversely affect plant physiology and development.


Assuntos
Nanopartículas , Pseudotsuga , Gasolina , Transcriptoma , Emissões de Veículos
4.
J Environ Qual ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072835

RESUMO

While mining provides valuable metals and minerals to meet societal demands, it can cause environmental contamination from the residuals (i.e., tailings) of mining. Tailings are often acidic, laden with heavy metals, and lacking adequate nutrients and physical conditions for plant growth, precluding the establishment of plant cover to reduce the offsite movement of mining wastes. This paper describes a case study at the Formosa Mine in Douglas County, Oregon, where tailings were amended with a mixture of lime, biosolids, biochar, and microbial inoculum to facilitate establishment of Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) seedlings. Results show that the tailings pH increased, and Douglas-fir seedlings survived and grew with these amendments. After 2 years, pH did, however, decrease in some downslope locations and was associated with an increase in tree mortality. This suggests that tailings conditions should be monitored, and amendments should be reapplied as needed, particularly in areas receiving acidic runoff from unamended upslope tailings, until the seedlings are fully established. This study not only provides a prescription for the addition of biochar and other amendments to enhance plant growth for revegetation purposes in low-pH, metal-contaminated mine tailings, but it also demonstrates a method that can be used to address similar problems at other mine sites.

5.
Sci Total Environ ; 927: 171153, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460683

RESUMO

About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.

6.
Agrosyst Geosci Environ ; 6(3): 1-18, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38268614

RESUMO

To provide recommendations for establishment of plants on low-pH Formosa Mine tailings, two greenhouse experiments were conducted to evaluate the use of remedial amendments to improve the survival and growth of Douglas fir (Pseudotsuga menziesii) seedlings. A preliminary experiment indicated that 1% lime (by weight) raised tailings pH, permitting seedling survival. However, high rates of biosolid application (BS; 2% by weight) added to supply nutrients were phytotoxic when added with lime. A gasified conifer biochar (BC) added to tailings at 1%, 2.5%, or 5% (by weight), along with lime and BS, caused an additional increase in pH, decreased electrical conductivity (EC), and tended to increase the survival of Douglas fir. The addition of a locally sourced microbial inoculum (LSM) did not affect survival. A subsequent experiment expanded our experimental design by testing multiple levels of amendments that included lime (0.5% and 1% by weight), three application rates (0.2%, 0.5%, and 2%) of two nutrient sources (BS or mineral fertilizer), BC (0% and 2.5%), and with or without LSM. There were many interactions among amendments. In general, Douglas fir survival was enhanced when lime and BC were added. These experiments suggest that amending with lime, a nutrient source, and BC would enhance revegetation on low-pH, metal-contaminated mine tailings.

7.
New Phytol ; 191(3): 840-849, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21443650

RESUMO

• Transgenic plants can offer agricultural benefits, but the escape of transgenes is an environmental concern. In this study we tested the hypothesis that glyphosate drift and herbivory selective pressures can change the rate of transgene flow between the crop Brassica napus (canola), and weedy species and contribute to the potential for increased transgene escape risk and persistence outside of cultivation. • We constructed plant communities containing single transgenic B. napus genotypes expressing glyphosate herbicide resistance (CP4 EPSPS), lepidopteran insect resistance (Cry1Ac), or both traits ('stacked'), plus nontransgenic B. napus, Brassica rapa and Brassica nigra. Two different selective pressures, a sublethal glyphosate dose and lepidopteran herbivores (Plutella xylostella), were applied and rates of transgene flow and transgenic seed production were measured. • Selective treatments differed in the degree in which they affected gene flow and production of transgenic hybrid seed. Most notably, glyphosate-drift increased the incidence of transgenic seeds on nontransgenic B. napus by altering flowering phenology and reproductive function. • The findings of this study indicate that transgenic traits may be transmitted to wild populations and may increase in frequency in weedy populations through the direct and indirect effects of selection pressures on gene flow.


Assuntos
Brassica/efeitos dos fármacos , Brassica/genética , Fluxo Gênico/genética , Glicina/análogos & derivados , Lepidópteros/fisiologia , Animais , Biodiversidade , Brassica/fisiologia , Brassica napus/efeitos dos fármacos , Brassica napus/genética , Brassica napus/fisiologia , Brassica rapa/efeitos dos fármacos , Brassica rapa/genética , Brassica rapa/fisiologia , Genótipo , Glicina/farmacologia , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Reprodução/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Seleção Genética , Transgenes/genética , Glifosato
8.
J Plant Sci Phytopathol ; 5(3): 76-87, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35156005

RESUMO

The fungal pathogen, Nothophaeocryptopus gaeumannii, occurs wherever Douglas-fir is found but disease damage is believed to be limited to the Coast Range and is of no concern outside the coastal fog zone (Shaw, et al., 2011). However, knowledge remains limited on the history and spatial distribution of Swiss Needle Cast (SNC) impacts in the Pacific Northwest (PNW). We reconstructed the history of SNC impacts on mature Douglas-fir trees based on tree ringwidth chronologies from the west slope of the Coast Range to the high Cascades of Oregon. Our findings show that SNC impacts on growth occur wherever Douglas-fir is found in western Oregon and is not limited to the coastal fog zone. The spatiotemporal patterns of growth impact from SNC disease were synchronous across the region, displayed periodicities of 25-30 years, strongly correlated with winter and summer temperatures and summer precipitation, and matched the patterns of enriched cellulosic stable carbon isotope indicative of physiological stress. While winter and summer temperature and summer precipitation influenced pathogen dynamics at all sites, the primary climatic factor of these three limiting factors varied spatially by location, topography, and elevation. In the 20th century, SNC impacts at low- to mid-elevations were least severe during the warm phase of the Pacific Decadal Oscillation (PDO, 1924-1945) and most severe in 1984-1986, following the cool phase of the PDO (1945-1977). At high elevations on the west slope of the Cascade Mountains, SNC impacts were the greatest in the 1990s and 2000s, a period of warmer winter temperatures associated with climate change. Warmer winters will likely continue to increase SNC severity at higher elevations, north along the coast from northern Oregon to British Columbia, and inland where low winter temperatures currently limit growth of the pathogen. Surprisingly, tree-ring records of ancient Douglas-fir logs dated ~53K radioactive years B.P. from Eddyville, OR displayed 7.5- and 20-year periodicities of low growth, similar to those found in modern day coastal Douglas-fir tree-ring records which we interpret as being due to cyclic fluctuations in SNC severity. Our findings indicate that SNC has persisted for as long as its host, and as a result of changing climate, may become a significant forest health problem in areas of the PNW beyond the coastal fog zone.

9.
Environ Toxicol Chem ; 40(12): 3351-3368, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551151

RESUMO

Micronized copper (Cu) azole (MCA) wood preservative formulations include Cu in nano form, and relatively little is known about longer term effects of Cu leached from MCA into wetland ecosystems. We tested the hypothesis that changes in soil microbiomes within reconstructed freshwater wetlands will be associated with exposure to elevated Cu concentrations originating from immersed MCA-treated wood stakes. Eight replicate communities were assembled with Willamette Valley (OR, USA) flood plain soil and clonally propagated wetland plants within mesocosms. Inundated communities were equilibrated for 5 months before installation of MCA or control southern yellow pine stakes (n = 4 communities/experimental group). Soil samples were collected for 16S and internal transcribed spacer amplicon sequencing to quantify responses in prokaryotes and eukaryotes, respectively, at 15 time points, spanning two simulated seasonal dry downs, for up to 678 days. Physiochemical properties of water and soil were monitored at 20 and 12 time points respectively, over the same period. For both taxonomic groups of organisms, phylogenetic diversity increased and was positively correlated with elapsed days. Furthermore, there was significant divergence among eukaryotes during the second year based on experimental group. Although the composition of taxa underwent succession over time, there was significantly reduced relative abundance of sequence variants from Gomphonema diatoms and Scutellinia fungi in communities where MCA wood stakes were present compared with the controls. These focused microbiome shifts were positively correlated with surface water Cu and soil Cu concentrations, which were significantly elevated in treated communities. The reconstructed communities were effective systems for assessing potential impacts to wetland microbiomes after exposure to released copper. The results further inform postcommercialization risk assessments on MCA-treated wood. Environ Toxicol Chem 2021;40:3351-3368. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Microbiota , Madeira , Azóis , Cobre/análise , Cobre/toxicidade , Filogenia , Solo , Áreas Alagadas , Madeira/química
10.
Environ Manage ; 45(4): 759-78, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20140674

RESUMO

Alien plant species are stressors to ecosystems and indicators of reduced ecosystem integrity. The magnitude of the stress reflects not only the quantity of aliens present, but also the quality of their interactions with native ecosystems. We develop an Index of Alien Impact (IAI) to estimate the collective ecological impact of in situ alien species. IAI summarizes the frequency of occurrence and potential ecological impact (Invasiveness-Impact Score (I ( i ))) of individual alien species for all aliens present in a particular location or community type. A component metric, I (i), is based on ecological species traits (life history, ecological amplitude, and ability to alter ecosystem processes) that reflect mechanisms, which can increase impact to ecosystem structure and function. While I (i) is less complex than some other multi-metric rankings of alien impact, it compares well to these metrics and to qualitative judgments. IAI can be adapted for different ecological settings by modifying the set of species traits incorporated in I (i) to reflect properties likely to breach biotic and abiotic barriers or alter ecosystem function in a particular region or community type of interest. To demonstrate our approach, we created versions of IAI and I (i), applicable to the diverse streamside vegetation of a river basin (19,631 km(2)) spanning low-elevation arid to mesic montane habitats in eastern Oregon, USA. In this demonstration effort, we (1) evaluate relationships of IAI to metrics describing invasion level, and (2) illustrate the potential utility of IAI for prioritizing alien species management activities and informing restoration goals.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental/métodos , Modelos Teóricos , Desenvolvimento Vegetal , Oregon , Especificidade da Espécie
11.
Ecol Evol ; 7(24): 11167-11196, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29299291

RESUMO

The fungal pathogen, Phaeocryptopus gaeumannii, causing Swiss needle cast (SNC) occurs wherever Douglas-fir is found but disease damage is believed to be limited in the U.S. Pacific Northwest (PNW) to the Coast Range of Oregon and Washington (Hansen et al., Plant Disease, 2000, 84, 773; Rosso & Hansen, Phytopathology, 2003, 93, 790; Shaw, et al., Journal of Forestry, 2011, 109, 109). However, knowledge remains limited on the history and spatial distribution of SNC impacts in the PNW. We reconstructed the history of SNC impacts on mature Douglas-fir trees based on tree-ring width chronologies from western Oregon. Our findings show that SNC impacts on growth occur wherever Douglas-fir is found and is not limited to the coastal fog zone. The spatiotemporal patterns of growth impact from SNC disease were synchronous across the region, displayed periodicities of 12-40 years, and strongly correlated with winter and summer temperatures and summer precipitation. The primary climatic factor limiting pathogen dynamics varied spatially by location, topography, and elevation. SNC impacts were least severe in the first half of the 20th century when climatic conditions during the warm phase of the Pacific Decadal Oscillation (1924-1945) were less conducive to pathogen development. At low- to mid-elevations, SNC impacts were most severe in 1984-1986 following several decades of warmer winters and cooler, wetter summers including a high summer precipitation anomaly in 1983. At high elevations on the west slope of the Cascade Range, SNC impacts peaked several years later and were the greatest in the 1990s, a period of warmer winter temperatures. Climate change is predicted to result in warmer winters and will likely continue to increase SNC severity at higher elevations, north along the coast from northern Oregon to British Columbia, and inland where low winter temperatures currently limit growth of the pathogen. Our findings indicate that SNC may become a significant forest health problem in areas of the PNW beyond the coastal fog zone.

12.
Environ Monit Assess ; 75(1): 51-72, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15900665

RESUMO

This article evaluates the performance of a protocol to monitor riparian forests in western Oregon, United States based on the quality of the data obtained from a field survey. Precision is the criteria used to determine the quality of 19 field and 6 derived metrics. The derived metrics were calculated from the field data. The survey consisted of 110 riparian sites on public and private lands that were sampled during the summers of 1996 and 1997. In order to calculate metric precision, some of the field plots were re-measured. Metric precision was defined in terms of the coefficient of variability (CV) and standard deviation and then compared with a pre-defined data quality objective (DQO). A metric was considered precise if the CV met or exceeded the DQO. The geomorphology metrics were not precise while the forest stand inventory metrics and forest cover metrics, with some exceptions, were precise. The precision for many of the field and derived metrics compared favorably with the level of precision for similar metrics reported in the literature. Recommendations are made to improve the precision for some metrics and they include changing the way precision is calculated, re-defining the field protocol, or improving field training.


Assuntos
Monitoramento Ambiental/métodos , Agricultura Florestal , Calibragem , Coleta de Dados , Ecossistema , Exposição Ambiental , Geografia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA