Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Mol Life Sci ; 80(8): 238, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535170

RESUMO

Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.


Assuntos
Doença de Huntington , Células-Tronco Neurais , Humanos , Animais , Camundongos , Doença de Huntington/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Corpo Estriado/metabolismo , Diferenciação Celular , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de Doenças
2.
Am J Physiol Cell Physiol ; 310(7): C520-41, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26718628

RESUMO

Although numerous protocols have been developed for differentiation of neurons from a variety of pluripotent stem cells, most have concentrated on being able to specify effectively appropriate neuronal subtypes and few have been designed to enhance or accelerate functional maturity. Of those that have, most employ time courses of functional maturation that are rather protracted, and none have fully characterized all aspects of neuronal function, from spontaneous action potential generation through to postsynaptic receptor maturation. Here, we describe a simple protocol that employs the sequential addition of just two supplemented media that have been formulated to separate the two key phases of neural differentiation, the neurogenesis and synaptogenesis, each characterized by different signaling requirements. Employing these media, this new protocol synchronized neurogenesis and enhanced the rate of maturation of pluripotent stem cell-derived neural precursors. Neurons differentiated using this protocol exhibited large cell capacitance with relatively hyperpolarized resting membrane potentials; moreover, they exhibited augmented: 1) spontaneous electrical activity; 2) regenerative induced action potential train activity; 3) Na(+) current availability, and 4) synaptic currents. This was accomplished by rapid and uniform development of a mature, inhibitory GABAAreceptor phenotype that was demonstrated by Ca(2+) imaging and the ability of GABAAreceptor blockers to evoke seizurogenic network activity in multielectrode array recordings. Furthermore, since this protocol can exploit expanded and frozen prepatterned neural progenitors to deliver mature neurons within 21 days, it is both scalable and transferable to high-throughput platforms for the use in functional screens.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Meios de Cultura/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Western Blotting , Ciclo Celular/fisiologia , Linhagem Celular , Técnicas de Cocultura , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Eletrônica de Varredura , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Técnicas de Patch-Clamp , Receptores de GABA-A/metabolismo
3.
Cells ; 11(13)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805069

RESUMO

Human pluripotent stem cells (hPSCs) have generated unprecedented interest in the scientific community, given their potential applications in regenerative medicine, disease modeling, toxicology and drug screening. However, hPSCs are prone to acquire genomic alterations in vitro, mainly due to suboptimal culture conditions and inappropriate routines to monitor genome integrity. This poses a challenge to both the safety of clinical applications and the reliability of basic and translational hPSC research. In this study, we aim to investigate if the implementation of a Quality Management System (QMS) such as ISO9001:2015 to ensure reproducible and standardized cell culture conditions and genomic screening strategies can decrease the prevalence of genomic alterations affecting hPSCs used for research applications. To this aim, we performed a retrospective analysis of G-banding karyotype and Comparative Genomic Hybridization array (aCGH) data generated by our group over a 5-year span of different hESC and hiPSC cultures. This work demonstrates that application of a QMS to standardize cell culture conditions and genomic monitoring routines leads to a striking improvement of genomic stability in hPSCs cultured in vitro, as evidenced by a reduced probability of potentially pathogenic chromosomal aberrations and subchromosomal genomic alterations. These results support the need to implement QMS in academic laboratories performing hPSC research.


Assuntos
Células-Tronco Pluripotentes , Técnicas de Cultura de Células/métodos , Hibridização Genômica Comparativa , Instabilidade Genômica , Genômica , Humanos , Padrões de Referência , Reprodutibilidade dos Testes , Estudos Retrospectivos
4.
J Inherit Metab Dis ; 33(6): 795-802, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20857335

RESUMO

Several unrelated disorders can lead to 5-methyltetrahydrofolate (5MTHF) depletion in the cerobrospinal fluid (CSF), including primary genetic disorders in folate-related pathways or those causing defective transport across the blood-CSF barrier. We report a case of cerebral folate transport deficiency due to a novel homozygous mutation in the FOLR1 gene, in an effort to clarify phenotype-genotype correlation in this newly identified neurometabolic disorder. A previously healthy infant developed an ataxic syndrome in the second year of life, followed by choreic movements and progressive myoclonic epilepsy. At the age of 26 months, we analyzed CSF 5MTHF by HPLC with fluorescence detection and conducted magnetic resonance (MR) imaging and spectroscopy studies. Finally, we performed mutational screening in the coding region of the FOLR1 gene. MR showed a diffuse abnormal signal of the cerebral white matter, cerebellar atrophy and a reduced peak of choline in spectroscopy. A profound deficiency of CSF 5MTHF (2 nmol/L; NV 48-127) with reduced CSF/plasma folate ratio (0.4; NV 1.5-3.5) was highly suggestive of defective brain folate-specific transport across the blood-CSF/brain barrier. Mutation screening of FOLR1 revealed a new homozygous missense mutation (p.Cys105Arg) that is predicted to abolish a disulfide bond, probably necessary for the correct folding of the protein. Both parents were heterozygous carriers of the same variant. Mutation screening in the FOLR1 gene is advisable in children with profound 5MTHF deficiency and decreased CSF/serum folate ratio. Progressive ataxia and myoclonic epilepsy, together with impaired brain myelination, are clinical hallmarks of the disease.


Assuntos
Ataxia/genética , Epilepsias Mioclônicas/genética , Receptor 1 de Folato/genética , Mutação de Sentido Incorreto , Ataxia/sangue , Ataxia/líquido cefalorraquidiano , Ataxia/complicações , Criança , Consanguinidade , Progressão da Doença , Eletromiografia , Epilepsias Mioclônicas/sangue , Epilepsias Mioclônicas/líquido cefalorraquidiano , Epilepsias Mioclônicas/complicações , Ácido Fólico/sangue , Ácido Fólico/líquido cefalorraquidiano , Homozigoto , Humanos , Masculino , Mutação de Sentido Incorreto/fisiologia , Linhagem
5.
Mol Neurobiol ; 57(6): 2766-2798, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32356172

RESUMO

Human pluripotent stem cells (hPSCs) are a powerful tool for modelling human development. In recent years, hPSCs have become central in cell-based therapies for neurodegenerative diseases given their potential to replace affected neurons. However, directing hPSCs into specific neuronal types is complex and requires an accurate protocol that mimics endogenous neuronal development. Here we describe step-by-step a fast feeder-free neuronal differentiation protocol to direct hPSCs to mature forebrain neurons in 37 days in vitro (DIV). The protocol is based upon a combination of specific morphogens, trophic and growth factors, ions, neurotransmitters and extracellular matrix elements. A human-induced PSC line (Ctr-Q33) and a human embryonic stem cell line (GEN-Q18) were used to reinforce the potential of the protocol. Neuronal activity was analysed by single-cell calcium imaging. At 8 DIV, we obtained a homogeneous population of hPSC-derived neuroectodermal progenitors which self-arranged in bi-dimensional neural tube-like structures. At 16 DIV, we generated hPSC-derived neural progenitor cells (NPCs) with mostly a subpallial identity along with a subpopulation of pallial NPCs. Terminal in vitro neuronal differentiation was confirmed by the expression of microtubule associated protein 2b (Map 2b) by almost 100% of hPSC-derived neurons and the expression of specific-striatal neuronal markers including GABA, CTIP2 and DARPP-32. HPSC-derived neurons showed mature and functional phenotypes as they expressed synaptic markers, voltage-gated ion channels and neurotransmitter receptors. Neurons displayed diverse spontaneous activity patterns that were classified into three major groups, namely "high", "intermediate" and "low" firing neurons. Finally, transplantation experiments showed that the NPCs survived and differentiated within mouse striatum for at least 3 months. NPCs integrated host environmental cues and differentiated into striatal medium-sized spiny neurons (MSNs), which successfully integrated into the endogenous circuitry without teratoma formation. Altogether, these findings demonstrate the potential of this robust human neuronal differentiation protocol, which will bring new opportunities for the study of human neurodevelopment and neurodegeneration, and will open new avenues in cell-based therapies, pharmacological studies and alternative in vitro toxicology.


Assuntos
Técnicas de Cultura de Células/métodos , Corpo Estriado/cirurgia , Neurogênese/fisiologia , Neurônios/transplante , Células-Tronco Pluripotentes/citologia , Animais , Linhagem Celular , Corpo Estriado/citologia , Humanos , Camundongos
6.
Mol Ther Methods Clin Dev ; 2: 15030, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26417608

RESUMO

A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC) into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE) and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA