Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(26): 13137-13142, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31171659

RESUMO

Periodic light-dark cycles govern the timing of basic biological processes in organisms inhabiting land as well as the sea, where life evolved. Although prominent marine phytoplanktonic organisms such as diatoms show robust diel rhythms, the mechanisms regulating these processes are still obscure. By characterizing a Phaeodactylum tricornutum bHLH-PAS nuclear protein, hereby named RITMO1, we shed light on the regulation of the daily life of diatoms. Alteration of RITMO1 expression levels and timing by ectopic overexpression results in lines with deregulated diurnal gene expression profiles compared with the wild-type cells. Reduced gene expression oscillations are also observed in these lines in continuous darkness, showing that the regulation of rhythmicity by RITMO1 is not directly dependent on light inputs. We also describe strong diurnal rhythms of cellular fluorescence in wild-type cells, which persist in continuous light conditions, indicating the existence of an endogenous circadian clock in diatoms. The altered rhythmicity observed in RITMO1 overexpression lines in continuous light supports the involvement of this protein in circadian rhythm regulation. Phylogenetic analysis reveals a wide distribution of RITMO1-like proteins in the genomes of diatoms as well as in other marine algae, which may indicate a common function in these phototrophs. This study adds elements to our understanding of diatom biology and offers perspectives to elucidate timekeeping mechanisms in marine organisms belonging to a major, but under-investigated, branch of the tree of life.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano/genética , Diatomáceas/fisiologia , Fotoperíodo , Fitoplâncton/fisiologia , Regulação da Expressão Gênica/fisiologia , Oceanos e Mares , Filogenia , Água do Mar/microbiologia , Transcriptoma
2.
Plant Biotechnol J ; 19(8): 1658-1669, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33759354

RESUMO

The CRISPR/Cas9 system is an RNA-guided sequence-specific genome editing tool, which has been adopted for single or multiple gene editing in a wide range of organisms. When working with gene families with functional redundancy, knocking out multiple genes within the same family may be required to generate a phenotype. In this study, we tested the possibility of exploiting the known tolerance of Cas9 for mismatches between the single-guide RNA (sgRNA) and target site to simultaneously introduce indels in multiple homologous genes in the marine diatom Phaeodactylum tricornutum. As a proof of concept, we designed two sgRNAs that could potentially target the same six light-harvesting complex (LHC) genes belonging to the LHCF subgroup. Mutations in up to five genes were achieved simultaneously using a previously established CRISPR/Cas9 system for P. tricornutum. A visible colour change was observed in knockout mutants with multiple LHCF lesions. A combination of pigment, LHCF protein and growth analyses was used to further investigate the phenotypic differences between the multiple LHCF mutants and WT. Furthermore, we used the two same sgRNAs in combination with a variant of the existing Cas9 where four amino acids substitutions had been introduced that previously have been shown to increase Cas9 specificity. A significant reduction of off-target editing events was observed, indicating that the altered Cas9 functioned as a high-fidelity (HiFi) Cas9 nuclease.


Assuntos
Sistemas CRISPR-Cas , Diatomáceas/genética , Edição de Genes , Sequência de Bases , Sistemas CRISPR-Cas/genética , Endonucleases , RNA Guia de Cinetoplastídeos/genética
3.
New Phytol ; 225(6): 2380-2395, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31598973

RESUMO

Phosphorus (P) is one of the limiting macronutrients for algal growth in marine environments. Microalgae have developed adaptation mechanisms to P limitation that involve remodelling of internal phosphate resources and accumulation of lipids. Here, we used in silico analyses to identify the P-stress regulator PtPSR (Phaeodactylum tricornutum phosphorus starvation response) in the diatom P. tricornutum. ptpsr mutant lines were generated using gene editing and characterised by various molecular, genetics and biochemical tools. PtPSR belongs to a clade of Myb transcription factors that are conserved in stramenopiles and distantly related to plant P-stress regulators. PtPSR bound specifically to a conserved cis-regulatory element found in the regulatory region of P-stress-induced genes. ptpsr knockout mutants showed reduction in cell growth under P limitation. P-stress responses were impaired in ptpsr mutants compared with wild-type, including reduced induction of P-stress response genes, near to complete loss of alkaline phosphatase activity and reduced phospholipid degradation. We conclude that PtPSR is a key transcription factor influencing P scavenging, phospholipid remodelling and cell growth in adaptation to P stress in diatoms.


Assuntos
Diatomáceas , Microalgas , Estramenópilas , Diatomáceas/genética , Microalgas/genética , Fósforo , Fatores de Transcrição/genética
4.
J Exp Bot ; 71(3): 850-864, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31665431

RESUMO

Small post-translationally modified peptides are important signalling components of plant defence responses against phytopathogens, acting as both positive and negative modulators. PAMP-INDUCED SECRETED PEPTIDE (PIP) 1 and 2 have been shown to amplify plant immunity. Here we investigate the role of the related peptide PIP3 in the regulation of immune response in Arabidopsis. Treatment with synthetic PIP peptides led to similar transcriptome reprogramming, indicating an effect on innate immunity-related processes and phytohormones, including jasmonic acid (JA) biosynthesis and signalling. PIP3 overexpressing (OX) plants showed enhanced growth inhibition in response to flg22 exposure. In addition, flg22-induced production of reactive oxygen species and callose deposition was significantly reduced in PIP3-OX plants. Interestingly, PIP3-OX plants showed increased susceptibility toward both Botrytis cinerea and the biotrophic pathogen Pseudomonas syringae. Expression of both JA and salicylic acid (SA) biosynthesis and signalling genes was more induced during B. cinerea infection in PIP3-OX plants compared with wild-type plants. Promoter and ChIP-seq analyses indicated that the transcription factors WRKY18, WRKY33, and WRKY40 cooperatively act as repressors for PIP3. The results point to a fine-tuning role for PIP3 in modulation of immunity through the regulation of SA and JA biosynthesis and signalling pathways in Arabidopsis.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Fatores de Transcrição/metabolismo
5.
Plant Physiol ; 175(4): 1543-1559, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29051196

RESUMO

Molecular mechanisms of phosphorus (P) limitation are of great interest for understanding algal production in aquatic ecosystems. Previous studies point to P limitation-induced changes in lipid composition. As, in microalgae, the molecular mechanisms of this specific P stress adaptation remain unresolved, we reveal a detailed phospholipid-recycling scheme in Nannochloropsis oceanica and describe important P acquisition genes based on highly corresponding transcriptome and lipidome data. Initial responses to P limitation showed increased expression of genes involved in P uptake and an expansion of the P substrate spectrum based on purple acid phosphatases. Increase in P trafficking displayed a rearrangement between compartments by supplying P to the chloroplast and carbon to the cytosol for lipid synthesis. We propose a novel phospholipid-recycling scheme for algae that leads to the rapid reduction of phospholipids and synthesis of the P-free lipid classes. P mobilization through membrane lipid degradation is mediated mainly by two glycerophosphoryldiester phosphodiesterases and three patatin-like phospholipases A on the transcriptome level. To compensate for low phospholipids in exponential growth, N. oceanica synthesized sulfoquinovosyldiacylglycerol and diacylglyceroltrimethylhomoserine. In this study, it was shown that an N. oceanica strain has a unique repertoire of genes that facilitate P acquisition and the degradation of phospholipids compared with other stramenopiles. The novel phospholipid-recycling scheme opens new avenues for metabolic engineering of lipid composition in algae.


Assuntos
Organismos Aquáticos , Microalgas/metabolismo , Fósforo/metabolismo , Estramenópilas/fisiologia , Transporte Biológico/fisiologia , Carbono/metabolismo , Metabolismo dos Lipídeos , Lipídeos/classificação
6.
Plant Cell Rep ; 37(10): 1401-1408, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167805

RESUMO

Diatoms are major components of phytoplankton and play a key role in the ecology of aquatic ecosystems. These algae are of great scientific importance for a wide variety of research areas, ranging from marine ecology and oceanography to biotechnology. During the last 20 years, the availability of genomic information on selected diatom species and a substantial progress in genetic manipulation, strongly contributed to establishing diatoms as molecular model organisms for marine biology research. Recently, tailored TALEN endonucleases and the CRISPR/Cas9 system were utilized in diatoms, allowing targeted genetic modifications and the generation of knockout strains. These approaches are extremely valuable for diatom research because breeding, forward genetic screens by random insertion, and chemical mutagenesis are not applicable to the available model species Phaeodactylum tricornutum and Thalassiosira pseudonana, which do not cross sexually in the lab. Here, we provide an overview of the genetic toolbox that is currently available for performing stable genetic modifications in diatoms. We also discuss novel challenges that need to be addressed to fully exploit the potential of these technologies for the characterization of diatom biology and for metabolic engineering.


Assuntos
Diatomáceas/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas , Genoma , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
7.
Nucleic Acids Res ; 44(7): 3147-64, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26681689

RESUMO

Differentially evolved responses to various stress conditions in plants are controlled by complex regulatory circuits of transcriptional activators, and repressors, such as transcription factors (TFs). To understand the general and condition-specific activities of the TFs and their regulatory relationships with the target genes (TGs), we have used a homogeneous stress gene expression dataset generated on ten natural ecotypes of the model plant Arabidopsis thaliana, during five single and six combined stress conditions. Knowledge-based profiles of binding sites for 25 stress-responsive TF families (187 TFs) were generated and tested for their enrichment in the regulatory regions of the associated TGs. Condition-dependent regulatory sub-networks have shed light on the differential utilization of the underlying network topology, by stress-specific regulators and multifunctional regulators. The multifunctional regulators maintain the core stress response processes while the transient regulators confer the specificity to certain conditions. Clustering patterns of transcription factor binding sites (TFBS) have reflected the combinatorial nature of transcriptional regulation, and suggested the putative role of the homotypic clusters of TFBS towards maintaining transcriptional robustness against cis-regulatory mutations to facilitate the preservation of stress response processes. The Gene Ontology enrichment analysis of the TGs reflected sequential regulation of stress response mechanisms in plants.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estresse Fisiológico/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Sítios de Ligação , Luz , Temperatura , Fatores de Transcrição/metabolismo , Transcriptoma
8.
J Exp Bot ; 68(13): 3557-3571, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28586470

RESUMO

Small signalling peptides have emerged as important cell to cell messengers in plant development and stress responses. However, only a few of the predicted peptides have been functionally characterized. Here, we present functional characterization of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. Localization studies suggest that the peptides require a signal peptide and C-terminal processing to be correctly transported out of the cell. Both IDL6 and IDL7 appear to be unstable transcripts under post-transcriptional regulation. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEIN (ZFP) genes, WRKY genes, and genes encoding calcium-dependent proteins. IDL7 expression was rapidly induced by hydrogen peroxide, and idl7 and idl6 idl7 double mutants displayed reduced cell death upon exposure to extracellular reactive oxygen species (ROS). Co-treatment of the bacterial elicitor flg22 with IDL7 peptide attenuated the rapid ROS burst induced by treatment with flg22 alone. Taken together, our results suggest that IDL7, and possibly IDL6, act as negative modulators of stress-induced ROS signalling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo
9.
Appl Microbiol Biotechnol ; 101(14): 5749-5763, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28577027

RESUMO

Accumulation of heavy metals without developing toxicity symptoms is a phenotype restricted to a small group of plants called hyperaccumulators, whose metal-related characteristics suggested the high potential in biotechnologies such as bioremediation and bioextraction. In an attempt to extrapolate the heavy metal hyperaccumulating phenotype to yeast, we obtained Saccharomyces cerevisiae cells armed with non-natural metal-binding hexapeptides targeted to the inner face of the plasma membrane, expected to sequester the metal ions once they penetrated the cell. We describe the construction of S. cerevisiae strains overexpressing metal-binding hexapeptides (MeBHxP) fused to the carboxy-terminus of a myristoylated green fluorescent protein (myrGFP). Three non-toxic myrGFP-MeBHxP (myrGFP-H6, myrGFP-C6, and myrGFP-(DE)3) were investigated against an array of heavy metals in terms of their effect on S. cerevisiae growth, heavy metal (hyper) accumulation, and capacity to remove heavy metal from contaminated environments.


Assuntos
Membrana Celular/química , Metais Pesados/metabolismo , Oligopeptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Biodegradação Ambiental , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Oligopeptídeos/química , Oligopeptídeos/genética , Fenótipo , Saccharomyces cerevisiae/genética
10.
Int J Mol Sci ; 18(11)2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29117115

RESUMO

Isothiocyanates (ITCs), the biologically important glucosinolate breakdown products, can present health-promoting effects, play an important role in plant defense and affect plant cellular mechanisms. Here, we evaluated the biological effects of ITCs on Arabidopsis thaliana by assessing growth parameters after long-term exposure to low concentrations of aliphatic and aromatic ITCs, ranging from 1 to 1000 µM. Treatment with the aliphatic allylisothiocyanate (allyl-ITC) led to a significant reduction of root length and fresh weight in a dose-dependent manner and affected the formation of lateral roots. To assess the importance of a hormonal crosstalk in the allyl-ITC-mediated growth reduction, the response of auxin and ethylene mutants was investigated, but our results did not allow us to confirm a role for these hormones. Aromatic ITCs generally led to a more severe growth inhibition than the aliphatic allyl-ITC. Interestingly, we observed a correlation between the length of their side chain and the effect these aromatic ITCs caused on Arabidopsis thaliana, with the greatest inhibitory effect seen for 2-phenylethyl-ITC. Root growth recovered when seedlings were removed from exposure to ITCs.


Assuntos
Arabidopsis/efeitos dos fármacos , Glucosinolatos/química , Isotiocianatos/farmacologia , Arabidopsis/crescimento & desenvolvimento , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Isotiocianatos/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Relação Estrutura-Atividade , Fatores de Tempo
11.
BMC Genomics ; 17(1): 740, 2016 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-27639974

RESUMO

BACKGROUND: Isothiocyanates (ITCs) are degradation products of the plant secondary metabolites glucosinolates (GSLs) and are known to affect human health as well as plant herbivores and pathogens. To investigate the processes engaged in plants upon exposure to isothiocyanate we performed a genome scale transcriptional profiling of Arabidopsis thaliana at different time points in response to an exogenous treatment with allyl-isothiocyanate. RESULTS: The treatment triggered a substantial response with the expression of 431 genes affected (P < 0.05 and log2 ≥ 1 or ≤ -1) already after 30 min and that of 3915 genes affected after 9 h of exposure, most of the affected genes being upregulated. These are involved in a considerable number of different biological processes, some of which are described in detail: glucosinolate metabolism, sulphate uptake and assimilation, heat stress response, oxidative stress response, elicitor perception, plant defence and cell death mechanisms. CONCLUSION: Exposure of Arabidopsis thaliana to vapours of allyl-isothiocyanate triggered a rapid and substantial transcriptional response affecting numerous biological processes. These include multiple stress stimuli such as heat stress response and oxidative stress response, cell death and sulphur secondary defence metabolism. Hence, effects of isothiocyanates on plants previously reported in the literature were found to be regulated at the gene expression level. This opens some avenues for further investigations to decipher the molecular mechanisms underlying the effects of isothiocyanates on plants.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Isotiocianatos/farmacologia , Estresse Oxidativo/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Glucosinolatos/metabolismo , Glutationa/metabolismo , Homeostase , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Receptores de Reconhecimento de Padrão/metabolismo , Transcrição Gênica
12.
J Exp Bot ; 66(2): 479-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25538257

RESUMO

The biggest challenge for modern biology is to integrate multidisciplinary approaches towards understanding the organizational and functional complexity of biological systems at different hierarchies, starting from the subcellular molecular mechanisms (microscopic) to the functional interactions of ecological communities (macroscopic). The plant-insect interaction is a good model for this purpose with the availability of an enormous amount of information at the molecular and the ecosystem levels. Changing global climatic conditions are abruptly resetting plant-insect interactions. Integration of discretely located heterogeneous information from the ecosystem to genes and pathways will be an advantage to understand the complexity of plant-insect interactions. This review will present the recent developments in omics-based high-throughput experimental approaches, with particular emphasis on studying plant defence responses against insect attack. The review highlights the importance of using integrative systems approaches to study plant-insect interactions from the macroscopic to the microscopic level. We analyse the current efforts in generating, integrating and modelling multiomics data to understand plant-insect interaction at a systems level. As a future prospect, we highlight the growing interest in utilizing the synthetic biology platform for engineering insect-resistant plants.


Assuntos
Fenômenos Ecológicos e Ambientais , Genômica/métodos , Insetos/fisiologia , Plantas/imunologia , Plantas/parasitologia , Biologia Sintética/métodos , Animais , Herbivoria/fisiologia
13.
J Exp Bot ; 66(20): 6281-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163699

RESUMO

Algal growth is strongly affected by nitrogen (N) availability. Diatoms, an ecologically important group of unicellular algae, have evolved several acclimation mechanisms to cope with N deprivation. In this study, we integrated physiological data with transcriptional and metabolite data to reveal molecular and metabolic modifications in N-deprived conditions in the marine diatom Phaeodactylum tricornutum. Physiological and metabolite measurements indicated that the photosynthetic capacity and chlorophyll content of the cells decreased, while neutral lipids increased in N-deprived cultures. Global gene expression analysis showed that P. tricornutum responded to N deprivation through an increase in N transport, assimilation, and utilization of organic N resources. Following N deprivation, reduced biosynthesis and increased recycling of N compounds like amino acids, proteins, and nucleic acids was observed at the transcript level. The majority of the genes associated with photosynthesis and chlorophyll biosynthesis were also repressed. Carbon metabolism was restructured through downregulation of the Calvin cycle and chrysolaminarin biosynthesis, and co-ordinated upregulation of glycolysis, the tricarboxylic acid cycle, and pyruvate metabolism, leading to funnelling of carbon sources to lipid metabolism. Finally, reallocation of membrane lipids and induction of de novo triacylglycerol biosynthesis directed cells to accumulation of neutral lipids.


Assuntos
Diatomáceas/metabolismo , Metabolismo dos Lipídeos , Nitrogênio/deficiência , Triglicerídeos/metabolismo , Diatomáceas/crescimento & desenvolvimento , Perfilação da Expressão Gênica
14.
J Exp Bot ; 66(17): 5351-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26062745

RESUMO

Peptide ligands play crucial roles in the life cycle of plants by modulating the innate immunity against pathogens and regulating growth and developmental processes. One well-studied example is INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which controls floral organ abscission and lateral root emergence in Arabidopsis thaliana. IDA belongs to a family of five additional IDA-LIKE (IDL) members that have all been suggested to be involved in regulation of Arabidopsis development. Here we present three novel members of the IDL subfamily and show that two of them are strongly and rapidly induced by different biotic and abiotic stresses. Furthermore, we provide data that the recently identified PAMP-INDUCED SECRETED PEPTIDE (PIP) and PIP-LIKE (PIPL) peptides, which show similarity to the IDL and C-TERMINALLY ENCODED PEPTIDE (CEP) peptides, are not only involved in innate immune response in Arabidopsis but are also induced by abiotic stress. Expression patterns of the IDA/IDL and PIP/PIPL genes were analysed using in silico data, qRT-PCR and GUS promoter lines. Transcriptomic responses to PIPL3 peptide treatment suggested a role in regulation of biotic stress responses and cell wall modification.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Peptídeos/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Peptídeos/metabolismo , Filogenia , Alinhamento de Sequência , Estresse Fisiológico
15.
Plant Physiol ; 161(2): 1034-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23209127

RESUMO

The regulation of carbon metabolism in the diatom Phaeodactylum tricornutum at the cell, metabolite, and gene expression levels in exponential fed-batch cultures is reported. Transcriptional profiles and cell chemistry sampled simultaneously at all time points provide a comprehensive data set on carbon incorporation, fate, and regulation. An increase in Nile Red fluorescence (a proxy for cellular neutral lipids) was observed throughout the light period, and water-soluble glucans increased rapidly in the light period. A near-linear decline in both glucans and lipids was observed during the dark period, and transcription profile data indicated that this decline was associated with the onset of mitosis. More than 4,500 transcripts that were differentially regulated during the light/dark cycle are identified, many of which were associated with carbohydrate and lipid metabolism. Genes not previously described in algae and their regulation in response to light were integrated in this analysis together with proposed roles in metabolic processes. Some very fast light-responding genes in, for example, fatty acid biosynthesis were identified and allocated to biosynthetic processes. Transcripts and cell chemistry data reflect the link between light energy availability and light energy-consuming metabolic processes. Our data confirm the spatial localization of processes in carbon metabolism to either plastids or mitochondria or to glycolysis/gluconeogenesis, which are localized to the cytosol, chloroplast, and mitochondria. Localization and diel expression pattern may be of help to determine the roles of different isoenzymes and the mining of genes involved in light responses and circadian rhythms.


Assuntos
Ciclo do Carbono/genética , Carbono/metabolismo , Diatomáceas/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Fotoperíodo , Aclimatação/genética , Aclimatação/efeitos da radiação , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/efeitos da radiação , Diatomáceas/genética , Diatomáceas/metabolismo , Perfilação da Expressão Gênica , Gluconeogênese/genética , Gluconeogênese/efeitos da radiação , Glicólise/genética , Glicólise/efeitos da radiação , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos da radiação , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Mitose/genética , Mitose/efeitos da radiação , Transportadores de Ácidos Monocarboxílicos , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Plastídeos/genética , Plastídeos/metabolismo , Plastídeos/efeitos da radiação , Complexo Piruvato Desidrogenase/classificação , Complexo Piruvato Desidrogenase/genética
16.
Plant Physiol ; 161(4): 1783-94, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23447525

RESUMO

Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity have profound effects on crop performance and yields. Thus, delineation of the regulatory networks and metabolic pathways responding to single and multiple concurrent stresses is required for breeding and engineering crop stress tolerance. Many studies have described transcriptome changes in response to single stresses. However, exposure of plants to a combination of stress factors may require agonistic or antagonistic responses or responses potentially unrelated to responses to the corresponding single stresses. To analyze such responses, we initially compared transcriptome changes in 10 Arabidopsis (Arabidopsis thaliana) ecotypes using cold, heat, high-light, salt, and flagellin treatments as single stress factors as well as their double combinations. This revealed that some 61% of the transcriptome changes in response to double stresses were not predic from the responses to single stress treatments. It also showed that plants prioritized between potentially antagonistic responses for only 5% to 10% of the responding transcripts. This indicates that plants have evolved to cope with combinations of stresses and, therefore, may be bred to endure them. In addition, using a subset of this data from the Columbia and Landsberg erecta ecotypes, we have delineated coexpression network modules responding to single and combined stresses.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Transcriptoma/genética , Arabidopsis/efeitos da radiação , Análise por Conglomerados , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Redes Reguladoras de Genes/genética , Luz , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos da radiação , Transcriptoma/efeitos da radiação
17.
Plant Cell ; 23(7): 2553-67, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21742991

RESUMO

Floral organ abscission in Arabidopsis thaliana is regulated by the putative ligand-receptor system comprising the signaling peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the two receptor-like kinases HAESA and HAESA-LIKE2. The IDA signaling pathway presumably activates a MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade to induce separation between abscission zone (AZ) cells. Misexpression of IDA effectuates precocious floral abscission and ectopic cell separation in latent AZ cell regions, which suggests that negative regulators are in place to prevent unrestricted and untimely AZ cell separation. Through a screen for mutations that restore floral organ abscission in ida mutants, we identified three new mutant alleles of the KNOTTED-LIKE HOMEOBOX gene BREVIPEDICELLUS (BP)/KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1). Here, we show that bp mutants, in addition to shedding their floral organs prematurely, have phenotypic commonalities with plants misexpressing IDA, such as enlarged AZ cells. We propose that BP/KNAT1 inhibits floral organ cell separation by restricting AZ cell size and number and put forward a model whereby IDA signaling suppresses BP/KNAT1, which in turn allows KNAT2 and KNAT6 to induce floral organ abscission.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Flores/fisiologia , Proteínas de Homeodomínio/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Homeodomínio/genética , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Environ Pollut ; 344: 123443, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38278400

RESUMO

Anthropogenic pollution is identified as an important threat to bird and other wildlife populations. Many metals and toxic elements, along with poly- and perfluoroalkyl substances (PFASs) are known to induce immunomodulation and have previously been linked to increased pathogen prevalence and infectious disease severity. In this study, the house sparrow (Passer domesticus) was investigated at the coast of Helgeland in northern Norway. This population is commonly infected with the parasitic nematode "gapeworm" (Syngamus trachea), with a prevalence of 40-60 % during summer months. Gapeworm induces severe respiratory disease in birds and has been previously demonstrated to decrease survival and reproductive success in wild house sparrows. The aim of this study was to investigate whether a higher exposure to pollution with PFASs, metals and other elements influences gapeworm infection in wild house sparrows. We conducted PFASs and elemental analysis on whole blood from 52 house sparrows from Helgeland, including analyses of highly toxic metals such as lead (Pb), mercury (Hg) and arsenic (As). In addition, we studied gapeworm infection load by counting the parasite eggs in faeces from each individual. We also studied the expression of microRNA 155 (miR155) as a key regulator in the immune system. Elevated blood concentrations of Pb were found to be associated with an increased prevalence of gapeworm infection in the house sparrow. The expression of miR155 in the plasma of the house sparrow was only weakly associated with Pb. In contrast, we found relatively low PFASs concentrations in the house sparrow blood (∑ PFASs 0.00048-354 µg/L) and PFASs were not associated to miR155 nor infection rate. The current study highlights the potential threat posed by Pb as an immunotoxic pollutant in small songbirds.


Assuntos
Fluorocarbonos , Pardais , Animais , Chumbo/toxicidade , Chumbo/metabolismo , Noruega/epidemiologia , Fluorocarbonos/metabolismo
19.
BMC Genomics ; 14: 722, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24148294

RESUMO

BACKGROUND: Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. RESULTS: In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. CONCLUSIONS: A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted regulatory network model was able to identify new ecotype specific transcription factors and their regulatory interactions, which might be crucial for their local geographic adaptation to cold temperature. Additionally, since the approach presented here is general, it could be adapted to study networks regulating biological process in any biological systems.


Assuntos
Arabidopsis/genética , Redes Reguladoras de Genes/genética , Genoma de Planta , Adaptação Fisiológica/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/biossíntese , Ritmo Circadiano , Temperatura Baixa , Elementos de DNA Transponíveis/genética , Ecótipo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
J Exp Bot ; 64(17): 5345-57, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23963677

RESUMO

Floral organ shedding is a cell separation event preceded by cell-wall loosening and generally accompanied by cell expansion. Mutations in NEVERSHED (NEV) or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) block floral organ abscission in Arabidopsis thaliana. NEV encodes an ADP-ribosylation factor GTPase-activating protein, and cells of nev mutant flowers display membrane-trafficking defects. IDA encodes a secreted peptide that signals through the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Analyses of single and double mutants revealed unique features of the nev and ida phenotypes. Cell-wall loosening was delayed in ida flowers. In contrast, nev and nev ida mutants displayed ectopic enlargement of abscission zone (AZ) cells, indicating that cell expansion alone is not sufficient to trigger organ loss. These results suggest that NEV initially prevents precocious cell expansion but is later integral for cell separation. IDA is involved primarily in the final cell separation step. A mutation in KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1), a suppressor of the ida mutant, could not rescue the abscission defects of nev mutant flowers, indicating that NEV-dependent activity downstream of KNAT1 is required. Transcriptional profiling of mutant AZs identified gene clusters regulated by IDA-HAE/HSL2. Several genes were more strongly downregulated in nev-7 compared with ida and hae hsl2 mutants, consistent with the rapid inhibition of organ loosening in nev mutants, and the overlapping roles of NEV and IDA in cell separation. A model of the crosstalk between the IDA signalling pathway and NEV-mediated membrane traffic during floral organ abscission is presented.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferação de Células , Parede Celular/metabolismo , Regulação para Baixo , Proteínas Ativadoras de GTPase/metabolismo , Perfilação da Expressão Gênica , Inflorescência/anatomia & histologia , Inflorescência/genética , Inflorescência/fisiologia , Modelos Biológicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/genética , Peptídeos/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA