Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Pharm ; 11(12): 4299-313, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25290882

RESUMO

Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs), involved in the induction of immunity and currently exploited for antitumor immunotherapies. An optimized noninvasive imaging modality capable of determining and quantifying DC-targeted nanoparticle (NP) trajectories could provide valuable information regarding therapeutic vaccine outcome. Here, targeted poly(d,l-lactide-co-glycolide) nanoparticles (PLGA NPs) recognizing DC receptors were equipped with superparamagnetic iron oxide particles (SPIO) or gold nanoparticles with fluorescently labeled antigen. The fluorescent label allowed for rapid analysis and quantification of DC-specific uptake of targeted PLGA NPs in comparison to uptake by other cells. Transmission electron microscopy (TEM) showed that a fraction of the encapsulated antigen reached the lysosomal compartment of DCs, where SPIO and gold were already partially released. However, part of the PLGA NPs localized within the cytoplasm, as confirmed by confocal microscopy. DCs targeted with NPs carrying SPIO or fluorescent antigen were detected within lymph nodes as early as 1 h after injection by magnetic resonance imaging (MRI). Despite the fact that targeting did not markedly affect PLGA NP biodistribution on organism and tissue level, it increased delivery of NPs to DCs residing in peripheral lymph nodes and resulted in enhanced T cell proliferation. In conclusion, two imaging agents within a single carrier allows tracking of targeted PLGA NPs at the subcellular, cellular, and organismal levels, thereby facilitating the rational design of in vivo targeted vaccination strategies.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Nanoestruturas/química , Animais , Células Cultivadas , Meios de Contraste , Células Dendríticas/imunologia , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Vacinas/imunologia
2.
Int J Cancer ; 129(2): 365-73, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20839261

RESUMO

Monitoring of cell therapeutics in vivo is of major importance to estimate its efficacy. Here, we present a novel intracellular label for (19)F magnetic resonance imaging (MRI)-based cell tracking, which allows for noninvasive, longitudinal cell tracking without the use of radioisotopes. A key advantage of (19)F MRI is that it allows for absolute quantification of cell numbers directly from the MRI data. The (19)F label was tested in primary human monocyte-derived dendritic cells. These cells took up label effectively, resulting in a labeling of 1.7 ± 0.1 × 10(13) (19)F atoms per cell, with a viability of 80 ± 6%, without the need for electroporation or transfection agents. This results in a minimum detection sensitivity of about 2,000 cells/voxel at 7 T, comparable with gadolinium-labeled cells. Comparison of the detection sensitivity of cells labeled with (19)F, iron oxide and gadolinium over typical tissue background showed that unambiguous detection of the (19)F-labeled cells was simpler than with the contrast agents. The effect of the (19)F agent on cell function was minimal in the context of cell-based vaccines. From these data, we calculate that detection of 30,000 cells in vivo at 3 T with a reasonable signal to noise ratio for (19)F images would require less than 30 min with a conventional fast spin echo sequence, given a coil similar to the one used in this study. This is well within acceptable limits for clinical studies, and thus, we conclude that (19)F MRI for quantitative cell tracking in a clinical setting has great potential.


Assuntos
Movimento Celular , Meios de Contraste , Células Dendríticas/fisiologia , Flúor , Fluorocarbonos , Imageamento por Ressonância Magnética/métodos , Vacinas Anticâncer , Contagem de Células , Células Dendríticas/imunologia , Estudos de Viabilidade , Humanos
3.
Mol Pharm ; 8(2): 520-31, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21381651

RESUMO

Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy against cancer and infectious diseases. The targeted delivery of nanovaccine particles (NPs) to DCs in vivo is a promising strategy to enhance immune responses. Here, targeted nanovaccine carriers were generated that allow multimodal imaging of nanocarrier-DC interactions from the subcellular to the organism level. These carriers were made of biodegradable poly(D,L-lactide-co-glycolide) harboring superparamagnetic iron oxide particles (SPIO) and fluorescently labeled antigen in a single particle. Targeted delivery was facilitated by coating the NPs with antibodies recognizing the DC-specific receptor DC-SIGN. The fluorescent label allowed for rapid analysis and quantification of specific versus nonspecific uptake of targeted NPs by DCs compared to other blood cells. In addition, it showed that part of the encapsulated antigen reached the lysosomal compartment of DCs within 24 h. Moreover, the presence of fluorescent label did not prevent the antigen from being presented to antigen-specific T cells. The incorporated SPIO was applied to track the NPs at subcellular cell organel level using transmission electron microscopy (TEM). NPs were found within endolysosomal compartments, where part of the SPIO was already released within 24 h. Furthermore, part of the NPs seemed to localize within the cytoplasm. Ex vivo loading of DCs with NPs resulted in efficient labeling and detection by MRI and did not abolish cell migration within collagen scaffolds. In conclusion, incorporation of two imaging agents within a single carrier allows tracking of targeted nanovaccines on a subcellular, cellular and possibly organism level, thereby facilitating rational design of in vivo targeted vaccination strategies.


Assuntos
Moléculas de Adesão Celular/imunologia , Células Dendríticas/imunologia , Portadores de Fármacos , Lectinas Tipo C/imunologia , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/administração & dosagem , Receptores de Superfície Celular/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Apresentação de Antígeno , Células Sanguíneas/imunologia , Moléculas de Adesão Celular/metabolismo , Células Dendríticas/metabolismo , Compostos Férricos/química , Citometria de Fluxo , Humanos , Ácido Láctico/química , Lectinas Tipo C/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Nanotecnologia , Fragmentos de Peptídeos/imunologia , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Receptores de Superfície Celular/metabolismo , Linfócitos T/imunologia
4.
Nanomedicine (Lond) ; 10(15): 2339-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26251876

RESUMO

AIM: In vivo imaging using (19)F MRI is advantageous, due to its ability to quantify cell numbers, but is limited for a lack of suitable labels. Here, we formulate two stable and clinically applicable labels for tracking two populations of primary human dendritic cells (DCs) simultaneously. MATERIALS & METHODS: Plasmacytoid and myeloid DCs are able to take up sufficient nanoparticles (200 nm) for imaging (10(12 19)F's per cell), despite being relatively nonphagocytic. RESULTS: Clinically relevant numbers of labeled DCs could be imaged in about 10 min, even on a clinical scanner. CONCLUSION: We demonstrate the use of perfluorocarbon nanoparticles for simultaneous (19)F MRI of distinct cell populations in a clinical setting, without spectroscopic imaging.


Assuntos
Fluorocarbonos/química , Ácido Láctico/química , Nanopartículas , Ácido Poliglicólico/química , Células Cultivadas , Imagem por Ressonância Magnética de Flúor-19 , Humanos , Teste de Cultura Mista de Linfócitos , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
5.
Clin Cancer Res ; 19(6): 1525-33, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23382117

RESUMO

PURPOSE: Anticancer dendritic cell (DC) vaccines require the DCs to relocate to lymph nodes (LN) to trigger immune responses. However, these migration rates are typically very poor. Improving the targeting of ex vivo generated DCs to LNs might increase vaccine efficacy and reduce costs. We investigated DC migration in vivo in humans under different conditions. EXPERIMENTAL DESIGN: HLA-A*02:01 patients with melanoma were vaccinated with mature DCs loaded with tyrosinase and gp100 peptides together with keyhole limpet hemocyanin (NCT00243594). For this study, patients received an additional intradermal vaccination with (111)In-labeled mature DCs. The injection site was pretreated with nonloaded, activated DCs, TNFα, or Imiquimod; granulocyte macrophage colony-stimulating factor was coinjected or smaller numbers of DCs were injected. Migration was measured by scintigraphy and compared with an intrapatient control vaccination. In an ex vivo tissue model, we measured CCL21-directed migration of (19)F-labeled DCs over a period of up to 12 hours using (19)F MRI to supplement our patient data. RESULTS: Pretreatment of the injection site induced local inflammatory reactions but did not improve migration rates. Both in vitro and in vivo, reduction of cell numbers to 5 × 10(6) or less cells per injection improved migration. Furthermore, scintigraphy is insufficient to study migration of such small numbers of (111)In-labeled DCs in vivo. CONCLUSION: Reduction of cell density, not pretreatment of the injection site, is crucial for improved migration of DCs to LNs in vivo.


Assuntos
Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Melanoma/terapia , Adolescente , Adulto , Idoso , Vacinas Anticâncer/imunologia , Movimento Celular , Células Dendríticas/citologia , Células Dendríticas/transplante , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Linfonodos/citologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Compostos Organometálicos/química , Oxiquinolina/análogos & derivados , Oxiquinolina/química , Linfócitos T Citotóxicos/imunologia
6.
Biomaterials ; 31(27): 7070-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20566214

RESUMO

Monitoring cell trafficking in vivo noninvasively is critical to improving cellular therapeutics, drug delivery, and understanding disease progression. In vivo imaging, of which magnetic resonance imaging (MRI) is a key modality, is commonly used for such monitoring. (19)F MRI allows extremely specific detection and quantification of cell numbers directly from in vivo image data, longitudinally and without ionizing radiation. We used fluorocarbons previously used in blood substitutes and imaging agents for ultrasound and computed tomography to synthesize monodisperse nanoparticles that are stable at 37 degrees C and can be frozen for storage. These large (19)F labeling compounds are insoluble in aqueous environments and often emulsified, typically forming emulsions unsuitable for long-term storage. Instead, we used a non-toxic polymer already in clinical use, poly(D,L-lactide-co-glycolide), to encapsulate a range of (19)F compounds. These nanoparticles can be customized in terms of content (imaging agent, fluorescent dye, drug), size (200-2000 nm), coating (targeting agent, antibody) and surface charge (-40 to 30 mV). We added a fluorescent dye and antibody to demonstrate the versatility of this modular imaging agent. These nanoparticles are adaptable to multimodal imaging, although here we focused on MRI and fluorescence imaging. Here, we imaged primary human dendritic cells, as used in clinical vaccines.


Assuntos
Diagnóstico por Imagem/métodos , Flúor/química , Fluorocarbonos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Animais , Células Cultivadas , Humanos , Camundongos , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA