Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 31(10): 1048-1059, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29663868

RESUMO

Nematodes are devastating pests that infect most cultivated plant species and cause considerable agricultural losses worldwide. The understanding of metabolic adjustments induced during plant-nematode interaction is crucial to generate resistant plants or to select more efficient molecules to fight against this pest. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used herein for in situ detection and mapping endogenous polypeptides and secondary metabolites from nematode-induced gall tissue. One of the major critical features of this technique is sample preparation; mainly, the generation of intact sections of plant cells with their rigid cell walls and vacuolated cytoplasm. Our experimental settings allowed us to obtain sections without contamination of exogenous ions or diffusion of molecules and to map the differential presence of low and high molecular weight ions in uninfected roots compared with nematode-induced galls. We predict the presence of lipids in both uninfected roots and galls, which was validated by MALDI time-of-flight tandem mass spectrometry and high-resolution mass spectrometry analysis of lipid extracts. Based on the isotopic ion distribution profile, both esters and glycerophospholipids were predicted compounds and may be playing an important role in gall development. Our results indicate that the MALDI-MSI technology is a promising tool to identify secondary metabolites as well as peptides and proteins in complex plant tissues like galls to decipher molecular processes responsible for infection and maintenance of these feeding sites during nematode parasitism.


Assuntos
Nematoides/fisiologia , Peptídeos/química , Raízes de Plantas/metabolismo , Solanum lycopersicum/parasitologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Lipídeos/química , Peptídeos/metabolismo , Raízes de Plantas/parasitologia
2.
Phytopathology ; 106(3): 282-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26551451

RESUMO

The root-knot nematode (Meloidogyne incognita) is one of most devastating pathogens that attack the common bean crop. Although there is evidence that some cultivars have race-specific resistance against M. incognita, these resistance sources have not proved effective, and nematodes are able to circumvent the host's defense system. We constructed RNA-seq based libraries and used a high-throughput sequencing platform to analyze the plant responses to M. incognita. Assessments were performed at 4 and 10 days after inoculation corresponding to the stages of nematode penetration and giant cell development, respectively. Large-scale transcript mapping to the common bean reference genome (G19833) resulted in the identification of 27,195 unigenes. Of these, 797 host genes were found to be differentially expressed. The functional annotation results confirm the complex interplay between abiotic and biotic stress signaling pathways. High expression levels of the wounding-responsive genes were observed over the interaction. At early response, an overexpression of the N gene, a TIR-NBS-LRR resistance gene, was understood as a host attempt to overcome the pathogen attack. However, the repression of heat shock proteins resulted in a lack of reactive oxygen species accumulation and absence of a hypersensitive response. Furthermore, the host basal response was broken by the repression of the ethylene/jasmonate pathway later in the response, resulting in a continuous compatible process with consequent plant susceptibility.


Assuntos
Regulação da Expressão Gênica de Plantas/imunologia , Phaseolus/parasitologia , Doenças das Plantas/parasitologia , Transcriptoma , Tylenchoidea/fisiologia , Animais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA