RESUMO
Iron porphyrins are molecular catalysts recognized for their ability to electrochemically and photochemically reduce carbon dioxide (CO2). The main reduction product is carbon monoxide (CO). CO holds significant industrial importance as it serves as a precursor for various valuable chemical products containing either a single carbon atom (C1), like methanol or methane, or multiple carbon atoms (Cn), such as ethanol or ethylene. Despite the long-established efficiency of these catalysts, optimizing their catalytic activity and stability and comprehending the intricate reaction mechanisms remain a significant challenge. This article presents a comprehensive investigation of the mechanistic aspects of the selective electroreduction of CO2 to CO using an iron porphyrin substituted with four trimethylammonium groups in the para position [(pTMA)FeIII-Cl]4+. By employing infrared and UV/Visible spectroelectrochemistry, changes in the electronic structure and coordination environment of the iron center can be observed in real-time as the electrochemical potential is adjusted, offering new insights into the reaction mechanisms. Catalytic species were identified, and evidence of a secondary reaction pathway was uncovered, potentially prompting a re-evaluation of the nature of the catalytically active species.
RESUMO
Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.
RESUMO
In the quest for designing efficient and stable photocatalytic materials for CO2 reduction, hybridizing a selective noble-metal-free molecular catalyst and carbon-based light-absorbing materials has recently emerged as a fruitful approach. In this work, we report about Co quaterpyridine complexes covalently linked to graphene surfaces functionalized by carboxylic acid groups. The nanostructured materials were characterized by X-ray photoemission spectroscopy, X-ray absorption spectroscopy, IR and Raman spectroscopies, high-resolution transmission electron microscopy and proved to be highly active in the visible-light-driven CO2 catalytic conversion in acetonitrile solutions. Exceptional stabilities (over 200 h of irradiation) were obtained without compromising the selective conversion of CO2 to products (>97%). Most importantly, complete selectivity control could be obtained upon adjusting the experimental conditions: production of CO as the only product was achieved when using a weak acid (phenol or trifluoroethanol) as a co-substrate, while formate was exclusively obtained in solutions of mixed acetonitrile and triethanolamine.
RESUMO
Achieving visible-light-driven carbon dioxide reduction with high selectivity control and durability while using only earth abundant elements requires new strategies. Hybrid catalytic material was prepared upon covalent grafting a Co-quaterpyridine molecular complex to semiconductive mesoporous graphitic carbon nitride (mpg-C3N4) through an amide linkage. The molecular material was characterized by various spectroscopic techniques, including XPS, IR, and impedance spectroscopy. It proved to be a selective catalyst for CO production in acetonitrile using a solar simulator with a high 98% selectivity, while being remarkably robust since no degradation was observed after 4 days of irradiation (ca. 500 catalytic cycles). This unique combination of a selective molecular catalyst with a simple and robust semiconductive material opens new pathways for CO2 catalytic light-driven reduction.
RESUMO
Using a phenoxazine-based organic photosensitizer and an iron porphyrin molecular catalyst, we demonstrated photochemical reduction of CO2 to CO and CH4 with turnover numbers (TONs) of 149 and 29, respectively, under visible-light irradiation (λ > 435 nm) with a tertiary amine as sacrificial electron donor. This work is the first example of a molecular system using an earth-abundant metal catalyst and an organic dye to effect complete 8e-/8H+ reduction of CO2 to CH4, as opposed to typical 2e-/2H+ products of CO or formic acid. The catalytic system continuously produced methane even after prolonged irradiation up to 4 days. Using CO as the feedstock, the same reactive system was able to produce CH4 with 85% selectivity, 80 TON and a quantum yield of 0.47%. The redox properties of the organic photosensitizer and acidity of the proton source were shown to play a key role in driving the 8e-/8H+ processes.
RESUMO
Molecular catalysis of carbon dioxide reduction using earth-abundant metal complexes as catalysts is a key challenge related to the production of useful products--the "solar fuels"--in which solar energy would be stored. A direct approach using sunlight energy as well as an indirect approach where sunlight is first converted into electricity could be used. A Co(II) complex and a Fe(III) complex, both bearing the same pentadentate N5 ligand (2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), were synthesized, and their catalytic activity toward CO2 reduction was investigated. Carbon monoxide was formed with the cobalt complex, while formic acid was obtained with the iron-based catalyst, thus showing that the catalysis product can be switched by changing the metal center. Selective CO2 reduction occurs under electrochemical conditions as well as photochemical conditions when using a photosensitizer under visible light excitation (λ > 460 nm, solvent acetonitrile) with the Co catalyst. In the case of the Fe catalyst, selective HCOOH production occurs at low overpotential. Sustained catalytic activity over long periods of time and high turnover numbers were observed in both cases. A catalytic mechanism is suggested on the basis of experimental results and preliminary quantum chemistry calculations.
RESUMO
Photodeprotection of 1,3-dithianes in the presence of thiapyrylium was performed to return to the parent carbonyl compound, and the mechanism was studied by steady state photolysis, laser flash photolysis, and theoretical calculations. Electron transfer from dithianes to triplet sensitizers is extremely fast, and the decay of dithiane radical cations was not affected by the presence of water or oxygen as the consequence of a favorable unimolecular fragmentation pathway. Similar behaviors were observed for dithianes bearing electron-releasing or electron-withdrawing substituents on the aryl moiety, evidenced by C-S bond cleavage to form a distonic radical cation species. The lack of reaction under nitrogen atmosphere, requirement of oxygen for good conversion yields, inhibition of the photodeprotection process by the presence of p-benzoquinone, and absence of a labeled carbonyl final product when the reaction is performed in the presence of H2(18)O all suggest that the superoxide anion drives the deprotection reaction. Density functional theory computational studies on the reactions with water, molecular oxygen, and the superoxide radical anion support the experimental findings.
Assuntos
Benzoquinonas/química , Compostos Heterocíclicos/química , Superóxidos/química , Transporte de Elétrons , Radicais Livres/química , Luz , Estrutura Molecular , Processos FotoquímicosRESUMO
Converting CO2 into valuable compounds using sunlight as the energy input and an earth-abundant metal complex as the catalyst is an exciting challenge related to contemporary energy issues as well as to climate change. By using an inexpensive organic photosensitizer under visible-light excitation (λ > 400 nm) and a substituted iron(0) tetraphenylporphyrin as a homogeneous catalyst, we have been able to generate carbon monoxide from CO2 selectively with high turnover numbers. Sustained catalytic activity over a long time period (t > 50 h) did not lead to catalyst or sensitizer deactivation. A catalytic mechanism is proposed.
RESUMO
The expansive and dynamic field of the CO2 Reduction Reaction (CO2RR) seeks to harness CO2 as a sustainable carbon source or energy carrier. While significant progress has been made in two, six, and eight-electron reductions of CO2, the four-electron reduction remains understudied. This review fills this gap, comprehensively exploring CO2 reduction into formaldehyde (HCHO) or acetal-type compounds (EOCH2OE, with E = [Si], [B], [Zr], [U], [Y], [Nb], [Ta] or -R) using various CO2RR systems. These encompass (photo)electro-, bio-, and thermal reduction processes with diverse reductants. Formaldehyde, a versatile C1 product, is challenging to synthesize and isolate from the CO2RR. The review also discusses acetal compounds, emphasizing their significance as pathways to formaldehyde with distinct reactivity. Providing an overview of the state of four-electron CO2 reduction, this review highlights achievements, challenges, and the potential of the produced compounds - formaldehyde and acetals - as sustainable sources for valuable product synthesis, including chiral compounds.
RESUMO
A key challenge in green synthesis is the catalytic transformation of renewable substrates at high atom and energy efficiency, with minimal energy input (ΔG ≈ 0). Non-thermal pathways, i.e., electrochemical and photochemical, can be used to leverage renewable energy resources to drive chemical processes at well-defined energy input and efficiency. Within this context, photochemical benzene carbonylation to produce benzaldehyde is a particularly interesting, albeit challenging, process that combines unfavorable thermodynamics (ΔG° = 1.7 kcal mol-1) and the breaking of strong C-H bonds (113.5 kcal mol-1) with full atom efficiency and the use of renewable starting materials. Herein, we present a mechanistic study of photochemical benzene carbonylation catalyzed by a rhodium-based pincer complex that is capable of metal-ligand cooperation. The catalytic cycle, comprising both thermal and non-thermal steps, was probed by NMR spectroscopy, UV-visible spectroscopy and spectrophotochemistry, and density functional theory calculations. This investigation provided us with a detailed understanding of the reaction mechanism, allowing us to unlock the catalytic reactivity of the Rh-pincer complex, which represents the first example of a metal-ligand cooperative system for benzene carbonylation, exhibiting excellent selectivity.
RESUMO
Inspired by natural enzymes, this study presents a nickel-based molecular catalyst, [Niâ(N2S2)]Cl2 (NiN2S2, N2S2=2,11-dithia[3,3](2,6)pyridinophane), for the photochemical catalytic reduction of CO2 under visible light. The catalyst was synthesized and characterized using various techniques, including liquid chromatography-high resolution mass spectrometry (LC-HRMS), UV-Visible spectroscopy, and X-ray crystallography. The crystallographic analysis revealed a slightly distorted octahedral coordination geometry with a mononuclear Ni2+ cation, two nitrogen atoms and two sulfur atoms. Photocatalytic CO2 reduction experiments were performed in homogeneous conditions using the catalyst in combination with [Ru(bpy)3]Cl2 (bpy=2,2'-bipyridine) as a photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as a sacrificial electron donor. The catalyst achieved a high selectivity of 89 % towards CO and a remarkable turnover number (TON) of 7991 during 8â h of visible light irradiation under CO2 in the presence of phenol as a co-substrate. The turnover frequency (TOF) in the initial 6â h was 1079â h-1, with an apparent quantum yield (AQY) of 1.08 %. Controlled experiments confirmed the dependency on the catalyst, light, and sacrificial electron donor for the CO2 reduction process. These findings demonstrate this bioinspired nickel molecular catalyst could be effective for fast and efficient photochemical catalytic reduction of CO2 to CO.
RESUMO
Besides its own interest, tryptophan oxidation by photogenerated Ru complexes is one of the several examples where concerted proton-electron transfer (CPET) to water as proton acceptor endowed with a pH-dependent driving force has been invoked to explain the data. Since this notion is contrary to the very basic principles of chemical physics, it was interesting to attempt uncovering the source of this contradiction with an easily accessible substrate. Careful examination of the oxidation of the tryptophan (ethyl ester derivative) bearing a NH3(+)/NH2 group showed that there is no trace of such an unconventional H2O-CPET with a pH-dependent driving force. The reaction mechanism simply consists, with both the NH3(+) acid and NH2 basic forms of the tryptophan derivative, in a rate-determining electron-transfer step followed by deprotonation steps. The same is true with the ethyl ester-methyl amide derivative of tryptophan, whose behavior is even simpler since the molecule does not bear an acid-base group. No such unconventional H2O-CPET was found with phenol, another easily accessible substrate. It may thus be inferred that the same applies to less easily available systems in which electron transfer occurs intramolecularly. These observations help to rid the road of such artificial obstacles and improve present models of H2O-CPET reactions, a landmark towards the understanding of the role of water chains in natural systems.
Assuntos
Transporte de Elétrons , Prótons , Triptofano/análogos & derivados , Água/química , Complexos de Coordenação/química , Concentração de Íons de Hidrogênio , Oxirredução , Rutênio/química , Triptofano/químicaRESUMO
Reaction mechanisms in which electron and proton transfers are coupled are central to a huge number of processes, both natural and synthetic. Moreover, most of the new approaches to address modern energy challenges involve proton-coupled electron transfer (PCET). Recent research has focused on the possibility that the two steps are concerted, that is, concerted proton-electron transfer (CPET) reactions, rather than stepwise pathways in which proton transfer precedes (PET) or follows (EPT) electron transfer. CPET pathways have the advantage of bypassing the high-energy intermediates of stepwise pathways, although this thermodynamic benefit may have a kinetic cost. Concerted processes require short distances between the group being oxidized and the proton acceptor (and vice versa for a reduction process), which usually involves the formation of a hydrogen bond. Unlike the electron in outer-sphere electron-transfer reactions, the distance a proton may travel in a CPET is therefore rather limited. The idea has recently emerged, however, that this distance may be substantially increased via a H-bond relay located between the electron-transfer-triggered proton source and the proton acceptor. Generally speaking, the relay is a group bearing a H atom able to accept a H-bond from the moiety being oxidized and, at the same time, to form a H-bond with the proton-accepting group without going through a protonated intermediate. Although these molecules do not retain all the properties of chains of water molecules engaged in Grotthuss-type transport of a proton, the OH group in these molecules does possess a fundamental property of water molecules: namely, it is both a hydrogen-bond acceptor and a hydrogen-bond donor. Despite centuries of study, the mechanisms of proton movement in water remain active experimental and theoretical research areas, but so far with no connection to CPET reactions. In this Account, we bring together recent results concerning (i) the oxidative response of molecules containing a H-bond relay and (ii) the oxidation of phenol with water (in water) as the proton acceptor. In the first case, a nondestructive electrochemical method (cyclic voltammetry) was used to investigate the oxidation of phenol molecules containing one H-bond relay and an amine proton acceptor compared with a similar amino phenol deprived of relay. In the second, the kinetics of phenol oxidation with water (in water) as proton acceptor is contrasted with that of conventional proton acceptors (such as hydrogen phosphate and pyridine) to afford evidence of the concerted nature of Grotthuss-type proton displacement with electron transfer. First indications were provided by the same electrochemical method, whereas a more complete kinetic characterization was obtained from laser flash photolysis. Older electrochemical results concerning the reduction of superoxide ion in the presence of water are also examined. The result is a timely picture of current insight into concerted mechanisms involving electron transfer coupled with proton transport over simple H-bond relays and over H-bond networks.
RESUMO
Three experimental techniques, laser flash photolysis, redox catalysis, and stopped-flow, were used to investigate the variation of the oxidation rate constant of phenol in neat water with the driving force offered by a series of electron acceptors. Taking into account a result previously obtained with a low-driving force electron acceptor thus allowed scanning more than half an electron-volt driving force range. Variation of the rate constant with pH showed the transition between a direct phenol oxidation reaction at low pH, where the rate constant does not vary with pH, and a stepwise reaction involving the prior deprotonation of phenol by OH(-), characterized by a unity-slope variation. Analyses of the direct oxidation kinetics, based on its variation with the driving force and on the determination of H/D isotope effects, ruled out a stepwise mechanism in which electron transfer is followed by the deprotonation of the initial cation radical at the benefit of a pathway in which proton and electron are transferred concertedly. Derivation of the characteristics of counterdiffusion in termolecular reactions allowed showing that the concerted process is under activation control. It is characterized by a remarkably small reorganization energy, in line with the electrochemical counterpart of the reaction, underpinning the very peculiar behavior of water as proton acceptor when it is used as the solvent.
Assuntos
Fenol/química , Água/química , Catálise , Transporte de Elétrons , Lasers , Oxirredução , Fotólise , Prótons , Rutênio/químicaRESUMO
The oxidation of PhOH in water by photochemically generated Ru(III)(bpy)(3) is taken as prototypal example disclosing the special character of water, in the solvent water, as proton acceptor in concerted proton-electron transfer reactions. The variation of the rate constant with temperature and driving force, as well as the variation of the H/D kinetic isotope effect with temperature, allowed the determination of the reaction mechanism characterized by three intrinsic parameters, the reorganization energy, a pre-exponential factor measuring the vibronic coupling of electronic states at equilibrium distance, and a distance-sensitivity parameter. Analysis of these characteristics and comparison with a standard base, hydrogen phosphate, revealed that electron transfer is concerted with a Grotthus-type proton translocation, leading to a charge delocalized over a cluster involving several water molecules. A mechanism is thus uncovered that may help in understanding how protons could be transported along water chains over large distances in concert with electron transfer in biological systems.
Assuntos
2,2'-Dipiridil/análogos & derivados , Fenol/química , Prótons , Água/química , 2,2'-Dipiridil/química , Complexos de Coordenação , Elétrons , OxirreduçãoRESUMO
Taking pyridine as a prototypal example of biologically important nitrogen bases involved in proton-coupled electron transfers, it is shown with the example of the photochemically triggered oxidation of phenol by Ru(III)(bpy)(3) that this proton acceptor partakes in a concerted pathway whose kinetic characteristics can be extracted from the overall kinetic response. The treatment of these data, implemented by the results of a parallel study carried out in heavy water, allowed the determination of the intrinsic kinetic characteristics of this proton acceptor. Comparison of the reorganization energies and of the pre-exponential factors previously derived for hydrogen phosphate and water (in water) as proton acceptors suggests that, in the case of pyridine, the proton charge is delocalized over a primary shell of water molecules firmly bound to the pyridinium cation.
Assuntos
Fenóis/química , Prótons , Piridinas/química , Transporte de Elétrons , Estrutura Molecular , Oxirredução , TermodinâmicaRESUMO
Carbon dioxide (CO2) is the iconic greenhouse gas and the major factor driving present global climate change, incentivizing its capture and recycling into valuable products and fuels. The 6H+/6e- reduction of CO2 affords CH3OH, a key compound that is a fuel and a platform molecule. In this Review, we compare different routes for CO2 reduction to CH3OH, namely, heterogeneous and homogeneous catalytic hydrogenation, as well as enzymatic catalysis, photocatalysis and electrocatalysis. We describe the leading catalysts and the conditions under which they operate, and then consider their advantages and drawbacks in terms of selectivity, productivity, stability, operating conditions, cost and technical readiness. At present, heterogeneous hydrogenation catalysis and electrocatalysis have the greatest promise for large-scale CO2 reduction to CH3OH. The availability and price of sustainable electricity appear to be essential prerequisites for efficient CH3OH synthesis.
RESUMO
The photoinduced reductive cleavage of the carbon-chlorine bond in some chlorobenzylic nitro- and cyano-substituted compounds has been studied by transient absorption spectroscopy. The influence of the nature of the electroattractive group as well as its relative position and of the mixture composition of the solvent were investigated to give new clues into the mechanisms and into the factors that control the concerted or stepwise character of the process. Experimental results have been compared with previous results obtained by electrochemical techniques on the same molecules. Analysis leads to the conclusion that, beside the molecular structure, the solvation conditions and the driving force offered to the reaction, the formation of an excited state may control the reactivity.
Assuntos
Clorobenzoatos/química , Eletroquímica , Fotoquímica , OxirreduçãoRESUMO
Substituted tetraphenyl Fe porphyrins are versatile molecular catalysts for the activation of small molecules (such as O2, H+ or CO2), which could lead to renewable energy storage, the direct production of fuels or new catalytic relevant processes. Herein, we review the recent studies of these earth-abundant metal catalysts for the electrochemical activation of dioxygen on the one hand and for the photostimulated reduction of carbon dioxide on the other hand. These two prototype reactions illustrate how mechanistic studies are the only rational approach to gain fundamental insights into the elementary steps that drive the catalysis and for identification of the key intrinsic parameters controlling the reactivity, offering in turn the possibility to rationally tune the structure of the catalysts as well as the catalytic conditions.
RESUMO
An iron-substituted tetraphenyl porphyrin bearing positively charged trimethylammonio groups at the para position of each phenyl ring catalyzes the photoinduced conversion of CO2 . This complex is water soluble and acts as a molecular catalyst to selectively reduce CO2 into CO under visible-light irradiation in aqueous solutions (acetonitrile/water=1:9â v/v) with the assistance of purpurin, a simple organic photosensitizer. CO is produced with a catalytic selectivity of 95 % and turnover number up to 120, illustrating the possibility of photocatalyzing the reduction of CO2 in aqueous solution by using visible light, a simple organic sensitizer coupled to an amine as a sacrificial electron donor, and an earth-abundant metal-based molecular catalyst.